Dawkins Richard - Wspinaczka na szczyt nieprawdopodobieństwa (ilustrowana).doc

(9316 KB) Pobierz
DAWKINS

RICHARD DAWKINS

WSPINACZKA NA SZCZYT NIEPRAWDOPODOBIEŃSTWA

 

Przełożyła Małgorzata Pawlicka-Yamazaki

Tytuł oryginału angielskiego: CLIMBING MOUNT IMPROBABLE

 

 

 

 

 

 

             


Robertowi Winstonowi

- dobremu lekarzowi i dobremu człowiekowi


SPIS RZECZY

 

Podziękowania

 

1 U stóp góry Rushmore

2 Jedwabne pęta

3 Posłanie ze Szczytu

4 Podbój przestworzy

5 Czterdzieści dróg do oświecenia

6 Muzeum wszystkich muszelek

7 Kalejdoskopowe zarodki

8 Ziarnka pyłku i czarodziejskie pociski

9 Robot powielający

10 „Ukryty ogród”

 

Bibliografia

Źródła ilustracji

 


PODZIĘKOWANIA

 

 

Książka ta powstała na podstawie moich bożonarodzeniowych wykładów w Instytucie Królewskim, które były pokazywane przez BBC pod wspólnym tytułem Dorastając we Wszechświecie [Growing up in Universe]. Musiałem z niego zrezygnować, ponieważ ostatnio ukazały się już co najmniej trzy podobnie zatytułowane pozycje. Co więcej, książka wyszła znacznie poza oryginalne wystąpienia - nie w porządku więc byłoby nazwać ją tak samo. Tak czy owak, składam serdeczne podziękowania dyrektorowi Instytutu Królewskiego za zaszczyt włączenia mnie do grona wielkich prowadzących słynne wykłady bożonarodzeniowe, zapoczątkowane wystąpieniem Michaela Faradaya. Bryson Gore z Instytutu Królewskiego, razem z Williamem Woollardem i Richardem Melmanem z Telewizji Inca, wywarli duży wpływ na ostateczny kształt moich wykładów, ciągle widoczny także w tej dużo obszerniejszej i poważnie zmienionej książce.

Michael Rodgers przeczytał i opatrzył wnikliwymi komentarzami pierwsze szkice dużo obszerniejszej wersji niż ostatecznie opublikowana i przekonał mnie do zmiany całego układu pracy. Fritz Vollrath i Peter Fuchs przeczytali rozdział drugi jako eksperci w poruszanych w nim dziedzinach, tak samo jak rozdział piąty Michael Land i Dan Nilsson. Wszyscy ci specjaliści dzielili się ze mną szczodrze swoją wiedzą, kiedy tylko tego potrzebowałem. Mark Ridley, Matt Ridley, Charles Simonyl i Lalla Ward Dawkins przeczytali ostateczną wersję książki i obdarzyli mnie sprawiedliwą porcją uwag krytycznych i napawających otuchą słów zachęty. Mary Cunnane z wydawnictwa W. W. Norton oraz Ravi Mirchandani z Viking Penguin wykazali się wielką wyrozumiałością i wspaniałomyślnością w ocenach mojej pracy, kiedy książka rosła, zaczynała żyć własnym życiem, aż wreszcie nabrała właściwych, łatwiejszych do opanowania proporcji. John Brockman pozostawał zawsze w odwodzie, nigdy nie narzucając swojej pomocy, ale zawsze gotowy jej udzielić. Specjaliści komputerowi to bohaterowie zbyt rzadko opiewani za swoje dokonania. Pisząc tę książkę, korzystałem z programów Petera Fuchsa, Thiemo Krinka i Sama Zschokke’a. Ted Kaehler pomógł mi w opracowaniu i napisaniu złożonego programu artropomorfów. Przy moim własnym zestawie programów „zegarmistrza” często korzystałem z pomocy Alana Grafena i Aluna ap Rhisiarta. Pracownicy Zbiorów Zoologicznych i Entomologicznych Muzeum Uniwersyteckiego w Oksfordzie wypożyczyli mi potrzebne okazy i udzielali fachowych wyjaśnień. Josine Meijer niezwykle sprawnie wyszukiwała ilustracje. Moja żona, Lalla Ward Dawkins, sporządziła rysunki (chociaż nie ona decydowała o ich układzie) - jej wielką miłość do Darwinowskiego Świata widać w każdej z jej prac.

Dziękuję serdecznie Charlesowi Simonyi’emu nie tylko za niezwykłą wielkoduszność i ufundowanie Katedry Upowszechniania Nauki, którą obecnie piastuję w Oksfordzie, ale również za przedstawienie swojej wizji - która zgadza się z moją - sztuki udostępniania wiedzy rzeszom odbiorców. Nie trywializuj. Staraj się zarazić innych poezją nauki, używając wyjaśnień na tyle prostych, na ile uczciwość pozwala, ale nie pomijaj rzeczy trudnych. Staraj się jeszcze bardziej, jeśli widzisz, że jest ktoś, kto naprawdę chce cię zrozumieć.


ROZDZIAŁ 1

U STÓP GÓRY RUSHMORE

 

Wysłuchałem właśnie wykładu o fidze. Nie, nie botanicznego - był to wykład z literatury. Nie brakuje nam fig w literaturze - mamy figę jako metaforę, zmieniającą się percepcję figi, figę jako symbol sromu niewieściego i listek figowy jako jego okrycie, figę jako obraźliwy gest, konstrukcję społeczną figi, uwagi L. H. Lawrence’a o tym, jak jeść figi w towarzystwie, odczytywanie figi, czy też - o ile pamiętam - „figę jako tekst”. Wykładowca przywołał wreszcie Księgę Rodzaju i opowieść o Ewie, która namówiła Adama, by skosztował owocu drzewa wiadomości. Przypomniał, że w biblijnej księdze nazwa tego owocu nie pada. Przyjęło się brać go za jabłko. Zdaniem wykładowcy jednak była to figa, i tą smaczną uwagą skończył wywód.

Takie swobodne rozważania to codzienność dla umysłów humanistycznych, mnie jednak skłoniły do zastanowienia się nad ich dosłownym znaczeniem. O co w tym wszystkim chodziło? Przecież mówca nie miał wątpliwości, że nigdy nie istniał ani rajski ogród, ani drzewo wiadomości dobrego i złego. Cóż więc chciał przez to powiedzieć? Chyba to, że „w pewnym sensie”, „choć może to brzmi dziwnie” i „jeśli dobrze się zastanowić”, to tak naprawdę „właściwym” owocem byłaby tu figa. Ale dość o tym. Nawet kiedy przestaniemy się czepiać literalnego pojmowania rzeczy, okaże się, że przeoczył on wiele ciekawszych aspektów figi. Jest tyle wspaniałych paradoksów i prawdziwej poezji figi, której subtelności mogłyby zachwycić najbardziej wymagający umysł i zniewolić najbardziej wytrawnego estetę. W książce tej chciałbym osiągnąć punkt, z którego zdołam opowiedzieć prawdziwą historię figi. Chociaż to tylko jedna z milionów opowieści zbudowanych na tych samych Darwinowskich zasadach gramatyki i logiki - dzieje figi są jednym z najlepszych przykładów zawikłanych dróg ewolucji. Odwołując się do najważniejszej metafory tej książki, można powiedzieć, że drzewo figowe osiągnęło jeden z najwyższych wierzchołków Góry Nieprawdopodobieństwa. Tak wysoki szczyt można jednak zdobyć dopiero na samym końcu wspinaczki. Wcześniej trzeba rozwinąć i objaśnić całą wizję życia, rozwiązać wiele zagadek i uporać się z licznymi paradoksami.

Jak powiedziałem, historia figi, na podstawowym poziomie, niczym nie odbiega od historii każdego innego organizmu żyjącego na Ziemi. Chociaż różnią się one od siebie już na pierwszy rzut oka, wszystkie są wariacjami na temat tego samego DNA i rezultatem 30 milionów sposobów, na jakie związek ten sam siebie odtwarza. Na naszym szlaku będziemy mieli okazję przyjrzeć się pajęczym sieciom - przejawom prawdziwego, choć nieuświadomionego geniuszu - w konstrukcji i działaniu. Odtworzymy powolny proces stopniowego rozwoju skrzydeł oraz pojawienia się trąby u słoni. Przekonamy się, że oko - legendarny przykład, mający być problemem nie do rozwiązania dla ewolucjonistów - pojawiło się w świecie zwierząt co najmniej czterdzieści, a prawdopodobnie nawet sześćdziesiąt razy, całkiem od siebie niezależnie. Zaprzęgniemy do pomocy programy komputerowe, aby pomogły nam w wędrówce po gigantycznym muzeum niezliczonych istot, jakie kiedykolwiek na Ziemi żyły i wyginęły, oraz, co więcej, także wśród tych znacznie liczniejszych potencjalnych ich kuzynów, którzy nigdy nie przyszli na świat. Będziemy przemierzać drogi prowadzące na szczyty Góry Nieprawdopodobieństwa, z daleka podziwiając jej strome zbocza, niestrudzenie wyszukując jednak jak najłagodniejszych podejść od przystępniejszej strony. Z czasem wyjaśni się znaczenie paraboli Góry Nieprawdopodobieństwa, a przy okazji i dużo więcej. Muszę zacząć od objaśnienia, jak konstruowane są obiekt przyrodnicze w stosunku do obiektów zaplanowanych przez człowieka i jaka jest rola przypadku. Taki jest cel rozdziału pierwszego.

Muzeum Historii Naturalnej w Londynie ma dziwaczną kolekcję kamieni, których kształty przypominają but, rękę, czaszkę dziecka, kaczkę, rybę. Nadesłali je ludzie przeświadczeni, że podobieństwo takie musi coś oznaczać. Wietrzenie skał daje jednak takie bogactwo kształtów, że nie powinien dziwić kamień podobny do buta czy kaczki. Spośród wszystkich dostrzeganych pod stopami kamieni muzeum przechowuje tylko te, które ktoś uznał za ciekawostkę. Tysiące innych pozostaje na swoich miejscach dlatego, że są zwykłymi kamieniami. Podobieństwo elementów tej kolekcji do konkretnych przedmiotów jest nieistotne, choć zabawne. Dokładnie tak samo nieważne, jak wtedy, gdy dopatrujemy się twarzy czy kształtów zwierząt w chmurach czy skalnych zboczach. Jest czysto przypadkowe.

Skalisty ustęp góry na rycinie 1.1 to wypisz wymaluj profil Kennedy’ch. Jeśli tylko komuś zwróci się na to uwagę, dopatrzy się podobieństwa do Johna lub Roberta Kennedy’ego. Ale nie wszyscy to dostrzegą i łatwo zgodzić się z twierdzeniem, że podobieństwo to jest dziełem przypadku. Może być jednak inaczej - nie da się na przykład przekonać racjonalnie myślącej osoby, że głowy prezydentów Waszyngtona, Jeffersona, Lincolna i Teodora Roosevelta na zboczach góry Rushmore w Południowej Dakocie są przypadkowym efektem procesów wietrzenia skał. I nie musi nam nikt mówić, że zostały one specjalnie wyrzeźbione (pod kierunkiem Gutzona Borgluma). Są w oczywisty sposób nieprzypadkowe - projekt przeziera z każdego ich fragmentu.

Różnicę między górą Rushmore a będącym skutkiem erozji atmosferycznej podobieństwem skał do profilu Johna Kennedy’ego (albo Mont St Pierre na Mauritiusie lub innych podobnych dzieł przyrody) można sprowadzić do stopnia prawdopodobieństwa. Po prostu liczba szczegółów, pod względem których rzeźba na stokach Rushmore przypomina rzeczywiste obiekty, jest zbyt wielka, aby była przypadkowa. Twarze są łatwo rozpoznawalne, nawet gdy się je ogląda pod różnym kątem. Natomiast przypadkowe podobieństwo widoczne na rycinie 1.1 do prezydenta Kennedy’ego jest widoczne tylko wówczas, gdy patrzy się na stok pod określonym kątem i przy odpowiednim oświetleniu.

Ryc. 1.1 Czysty przypadek. Profil prezydenta Kennedy’ego w zboczu hawajskiego wzgórza

 

Tak, skała może pod wpływem czynników atmosferycznych uformować się w kształt, który będzie przypominał nos, jeśli oglądać ją z odpowiedniego miejsca, a inne skały mogą razem utworzyć coś podobnego do ust. Nietrudno wyobrazić sobie podobny zbieg okoliczności, zwłaszcza jeśli fotograf znajdzie tylko jedno miejsce, z którego podobieństwo da się dostrzec (przy czym trzeba uwzględnić szczególną właściwość ludzkiego mózgu, który - o czym trochę szerzej powiemy nieco później - aktywnie doszukuje się w oglądanych obiektach podobieństw do ludzkich twarzy). Ale góra Rushmore to zupełnie inna sprawa. Te cztery twarze zostały po prostu zaprojektowane. Rzeźbiarz wymyślił je, narysował na papierze, dokonał precyzyjnych obliczeń względem całej skały i nadzorował pracę ludzi, którzy posługiwali się młotami pneumatycznymi i dynamitem, aby wyżłobić w kamieniu wszystkie cztery twarze, o wysokości blisko 20 metrów każda. Deszcz, mróz i wiatr mogłyby dokonać tego samego co dynamit stosowany przez zręcznego robotnika. Ale spośród wszystkich możliwych kształtów, jakie mogłyby przybrać skały ulegające erozji, bardzo niewiele dałoby w efekcie rozpoznawalne podobieństwo do czterech wybranych osób. Nawet gdybyśmy nie znali historii góry Rushmore, łatwo dostrzec, że szanse na to, by te cztery głowy pojawiły się dzięki przypadkowym procesom wietrzenia skał, są astronomicznie małe - podobnie jak szanse, że czterdziestokrotnie rzucając monetą, za każdym razem otrzymamy orła.

Myślę, że różnica między przypadkiem a projektem jest jasna - w teorii przynajmniej, bo może nie zawsze od razu oczywista w praktyce. W rozdziale tym jednak wprowadzę jeszcze jedną kategorię obiektów, trudniejszych do rozpoznania. Będę je nazywał projektoidami. Projektoidy to żywe organizmy oraz ich produkty. Wyglądają, jakby były zaprojektowane, do tego stopnia, że zapewne, niestety, większość ludzi tak sądzi. Osoby te są w błędzie. Ale mają rację, że projektoidy nie mogą być dziełem przypadku. Projektoidy nie powstały przypadkowo. Były w rzeczywistości uformowane przez najczęściej zupełnie nieprzypadkowe procesy, które tworzą niemal doskonałą iluzję zamierzonego projektu.

Rycina 1.2 pokazuje żyjącą rzeźbę. Chrząszcze na ogół nie wyglądają jak mrówki. Kiedy więc widzę chrząszcza, który do złudzenia przypomina mrówkę, co więcej - chrząszcza, który cale życie spędza w mrowisku, od razu podejrzewam, że za podobieństwem tym coś się kryje. Owad pokazany na następnej stronie to właśnie chrząszcz - jego bliscy krewni to chrząszcze ogrodowe - ale wygląda jak mrówka, chodzi jak mrówka i żyje razem z mrówkami w ich mrowisku.

Ryc. 1.2 Nie zaprojektowane, ale nieprzypadkowe podobieństwo. Przypominający mrówkę chrząszcz Labidus praedator (a) i mrówka Mimeciton antennatum (b)

 

Owad poniżej to prawdziwa mrówka. Tak samo jak w każdej rzeźbie realistycznej, podobieństwo do modela nie jest przypadkowe. Wymaga wyjaśnienia innego niż powoływanie się na czysty przypadek. Skąd się zatem bierze? Wszystkie chrząszcze, które z wyglądu uderzająco przypominają mrówki, żyją w mrowiskach lub przynajmniej w bliskich związkach z mrówkami, może więc działa tu jakaś substancja chemiczna pochodząca od mrówek albo chrząszcze zaraziły się czymś od mrówek, co wpływa na ich rozwój? Nie, rzeczywista odpowiedź - Darwinowski dobór naturalny - jest zupełnie inna i dojdziemy do niej nieco później. Na razie wystarczy, jeśli sobie uświadomimy, że takie podobieństwo, a także i inne przykłady mimikry, nie jest przypadkowe. Musi być zaprojektowane albo powstawać w wyniku procesów, które dają efekty do złudzenia przypominające rzeczywisty projekt. Przyjrzyjmy się innym przykładom mimikry wśród zwierząt, pozostawiając na razie otwartą kwestię, skąd bierze się owo podobieństwo.

Poprzedni przykład pokazuje, jak świetną robotę może wykonać ciało chrząszcza, jeśli nastawi się na naśladowanie innego owada. Teraz przyjrzyjmy się stworzeniu pokazanemu na rycinie 1.3. Wygląda jak termit. Prawdziwego termita, dla porównania, przedstawia rycina 1.3a. Okaz na rycinie 1.3b to wcale nie termit. To chrząszcz. Przyznaję, że znam lepsze przykłady mimikry w świecie owadów, jak choćby wspomniany przed chwilą chrząszcz naśladujący mrówkę. Bo ten jest trochę dziwny. Wydaje się, że jego odnóża nie mają właściwych połączeń stawowych, sprawiają wrażenie wygiętych baloników. Ponieważ, tak jak wszystkie inne owady, chrząszcze dysponują odnóżami zaopatrzonymi w ruchome stawy, można by tu oczekiwać jakiegoś lepszego przybliżenia stawowych odnóży termita. Skąd więc ta nieudolna imitacja przypominająca raczej nadmuchiwaną zabawkę niż prawdziwe owadzie odnóże? Odpowiedź można znaleźć na rycinie 1.3c - a jest to zaiste jeden z najbardziej zdumiewających popisów w świecie żywych stworzeń.

Ryc. 1.3 Prawdziwy termit Amitermes hastatus (a); chrząszcz Coatonachthodes ovambolandicus przypominający termity (b); sposób, w jaki podobieństwo to jest osiągane (c).

 

Przyjrzyjmy się temu chrząszczowi z boku: prawdziwa głowa chrząszcza to ten niewielki drobiazg (jego oko znajduje się tuż pod normalnymi wieloczłonowymi czułkami), przyczepiony do smukłego tułowia, od którego odchodzą trzy pary normalnych, członowanych odnóży służących mu naturalnie do poruszania się. Całą sztuczkę wykonał odwłok: jest on wygięty w łuk ku grzbietowi, tak że zawisa nad głową, tułowiem i odnóżami, całkowicie je nakrywając -jak parasol. „Termit” powstaje zatem z (anatomicznie) tylnej części odwłoka chrząszcza. „Głowa termita” to wysunięty kraniec odwłoka chrząszcza, a termicie „odnóża” i „czułki” to swobodnie zwieszające się z odwłoka jego wyrostki. Nie ma żadnych wątpliwości, że jakość tego naśladownictwa nie dorównuje doskonałości osiągniętej przez chrząszcza upodabniającego się do mrówki. Warto przy okazji zaznaczyć, że ten naśladujący termity chrząszcz żyje w termitierach jako pasożyt, podobnie jak żerujący w mrowiskach chrząszcz naśladujący mrówki. Chociaż stopień osiągniętego podobieństwa jest niższy, uzyskany efekt budzi większy podziw, jeśli weźmie się pod uwagę materiał wyjściowy. Mrówkopodobny chrząszcz zmienia każdy kawałek swojego ciała tak, by przypominał odpowiedni fragment ciała mrówki, podczas gdy termitopodobny zmienia tylko odwłok, by przypominał wszystkie części ciała termita.

Moim ulubieńcem wśród zwierzęcych rzeźb-podobizn jest liściasty pławikonik pokazany na rycinie 1.4. Jest to gatunek ryby, jeden z wielu koników morskich. Jego ciało przypomina wodorosty. Wygląd ten zapewnia mu ochronę - żyje bowiem wśród roślin wodnych i dzięki takim kształtom bardzo trudno go od nich odróżnić. Jego mimikra jest zbyt doskonała, aby mogła być dziełem jakkolwiek rozumianego przypadku. Podobieństwo to bliższe jest górze Rushmore niż zboczu z profilem Kennedy’ego. Moje przekonanie wynika po części z wielości sposobów, na jakie łudzi nas coś, udając coś, czym nie jest, a częściowo z faktu, że ryby zazwyczaj nie mają żadnych podobnych jak u tego konika morskiego wyrostków. Pod tym względem wyczyn owych stworzeń plasuje je bliżej termitopodobnych niż mrówkopodobnych chrząszczy.

Ryc. 1.4 Perfekcyjny kamuflaż. Samica pławikonika Phycodorus eques z Australii

 

Dotychczas przyglądaliśmy się tworom, które zdumiewają nas podobieństwem do rzeczywistych obiektów, tak wielkim, że nie sposób uznać go za przypadkowe. Liściasty pławikonik i mrówkopodobne chrząszcze to rzeźby-projektoidy: sprawiają nieodparte wrażenie, że zostały specjalnie zaprojektowane przez artystę po to, by przypominać coś innego. Ale rzeźby to tylko jeden z rodzajów tworów projektowanych przez człowieka. Inne wytwarzane przez ludzi przedmioty zachwycają nas nie z powodu podobieństwa do czegokolwiek, ale ze względu na swoją niezwykłą użyteczność do określonych zadań. Samolot świetnie nadaje się do latania. Dzbanek - do przechowywania wody. Nóż do cięcia i krajania.

Jeśli wyznaczyłoby się nagrodę za kamień, którego naturalne krawędzie są wystarczająco ostre, by coś przeciąć, a także za kamień, w który można nalać wody, dostałoby się prawdopodobnie sporo niezłych okazów. Krzemień często pęka w taki sposób, że powstają dostatecznie ostre krawędzie i jeśli przejdziecie się po kamieniołomach i piargach, z pewnością znajdziecie niejedno naturalne ostrze. Wśród wielkiego bogactwa kształtów, jakie przybierają wietrzejące kamienie, na pewno nie brakuje takich z zagłębieniami zdolnymi z łatwością zatrzymać wodę. Niektóre kryształy rosnąc wewnątrz pustek skalnych tworzą kule, które - podzielone na pół - mogą służyć za naczynia. Takie kamienie mają nawet swoją nazwę: geody. Mam jeden taki okaz na biurku - używam go jako przycisku do papierów i chętnie zrobiłbym z niego kubek, gdyby nie był w środku tak porowaty, że nie sposób go porządnie umyć.

Łatwo wymyślić miarę umożliwiającą stwierdzenie, że naturalnie powstające dzbanki są dużo mniej efektywne niż twory rąk ludzkich. Efektywność to rodzaj stosunku między uzyskiwanymi korzyściami a poniesionymi nakładami. Korzyść z dzbanka może być równoznaczna z objętością wody, jaką może on pomieścić. Nakłady zaś można wygodnie wyznaczać w odpowiednich jednostkach: ilości materiału tworzącego to naczynie. Efektywność będzie wówczas określona ilością wody, jaką naczynie może pomieścić, podzieloną przez ilość materiału, z którego jest ono zrobione. Do pustej geody leżącej na moim biurku mogę nalać 87,5 cm3 płynu. Objętość samego naczynia (którą zmierzyłem, korzystając ze słynnego z wydanego w wannie okrzyku „Eureka!” prawa Archimedesa) wynosi 130 cm3. Efektywność takiego „kubka” wynosi więc 0,673. Jest to bardzo niski współczynnik, co wcale nie dziwi - skała bowiem nigdy nie została zaprojektowana do tego celu. Może pomieścić wodę, ale to czysty przypadek. Przeprowadziłem takie same obliczenia z kieliszkiem i jego współczynnik efektywności okazał się sięgać 3,5. Srebrny dzbanuszek do śmietanki mojej znajomej jest jeszcze bardziej efektywny -można do niego nalać 250 cm3 wody, podczas gdy objętość srebra, z którego jest zrobiony, wynosi zaledwie 20 cm3. Jego współczynnik efektywności wynosi więc aż 12,5.

Nie wszystkie naczynia stworzone ludzką ręką mają podobny współczynnik efektywności. Masywne naczynie stojące w mojej kuchennej szafce ma pojemność 190 cm3, podczas gdy na jego wykonanie zużyto 400 cm3 marmuru. Jego efektywność wynosi więc zaledwie 0,475, jeszcze mniej niż przypadkowego, wydrążonego kamienia. Jak to możliwe? Odpowiedź jest prosta. Marmurowe naczynie to moździerz. Nie zrobiono go po to, by przechowywał wodę. Jest rodzajem ręcznego młynka, służącego do rozdrabniania przypraw i innych składników potraw za pomocą tłuczka: grubego trzonka, którym rozciera się ziarna, uderzając z dużą siłą w ścianki naczynia. Kieliszek do wina nie nadaje się do tego celu: gdyby spróbować go tak użyć, rozprysnąłby się na kawałki w jednej chwili. Współczynnik efektywności, jaki ustanowiliśmy dla pojemników na wodę, nie ma więc do moździerzy zastosowania. Musimy wymyślić inny sposób mierzenia stosunku między nakładami a korzyściami, przy czym korzyści są miarą siły, jakiej można użyć bez groźby zniszczenia naczynia. Czy geoda może służyć jako doskonały moździerz? Z pewnością przeszłaby test wytrzymałości, ale gdybyśmy spróbowali jej użyć, natychmiast okazałoby się, jak wielką wadą jest jej chropowate wnętrze - w drobnych szczelinach gromadziłyby się ziarna, unikając skutecznie roztarcia. Musimy więc udoskonalić nasz współczynnik efektywności dla moździerzy, włączając weń także wskaźnik gładkości wewnętrznej powierzchni naczynia. To, że mój moździerz jest przedmiotem celowo zaprojektowanym, widać także z innych jego własności: doskonale okrągłego przekroju, znakomicie wyprofilowanego brzegu i stabilnej podstawy.

Możemy zaproponować podobne miary efektywności dla noży i nie mam żadnych wątpliwości, że naturalnie wyostrzony krzemień, jaki wpadłby nam w rękę w czasie gorącej sprzeczki, nie wytrzymałby porównania nie tylko ze stalowymi ostrzami z Sheffield, ale nawet z muzealnymi okazami starannie obrobionych narzędzi z epoki kamiennej.

Jeszcze w innym sensie naturalnie powstałe, przypadkowe naczynia lub noże są nieefektywne w porównaniu z zaprojektowanymi przedmiotami. Aby znaleźć jeden odpowiednio wyostrzony kamień albo jeden nie przeciekający wydrążony kawałek skały, trzeba przejrzeć i odrzucić wiele nieużytecznych kamieni. Kiedy mierzymy pojemność naczynia i dzielimy ją przez objętość materiału, z którego zostało sporządzone, powinniśmy również uwzględnić koszt odrzuconego kamienia lub gliny. Dla naczynia powstającego na kole garncarskim koszta te są znikome i można je pominąć. Dla przedmiotu wyrzeźbionego, którego powstawaniu towarzyszy usuwanie niepotrzebnego materiału, byłyby one większe, ale ciągle niezbyt duże. Jeśli jednak chodzi o poszukiwanie przypadkowo powstałych obiektów (objet trouvé), które mogłyby pełnić funkcję noża lub naczynia, koszta odrzuconego surowca byłyby kolosalne. Znakomita większość kamieni nie jest ostra ani nie nadaje się do przechowywania wody. Przemysł, który opierałby się na przygodnych znaleziskach (objets trouvés) mających pełnić funkcję narzędzi i innych elementów niezbędnego wyposażenia, miałby ogromnie wysoki wskaźnik nieefektywności i najpewniej upadłby pod zwałami kompletnie nieprzydatnych odpadów. Dużo efektywniejsze niż poszukiwanie jest projektowanie.

Zainteresujmy się teraz projektoidami - organizmami, które wyglądają jak zaprojektowane, choć stały się tym, czym są za pośrednictwem zupełnie innych procesów - poczynając od projektoidów przypominających naczynia. Liść dzbanecznika (Nepenthes pervillei - ryc. 1.5) można uznać za jeszcze jedno naturalnie powstałe naczynie, ale ma on bardzo wysoki współczynnik efektywności w porównaniu z kieliszkiem do wina, jeśli nawet nie ze srebrnym dzbanuszkiem na śmietankę. Sprawia wrażenie znakomicie zaprojektowanego pod każdym względem, nie tylko aby przechowywać wodę, ale także przyciągać i trawić owady. Rozsiewa delikatny zapach, dla nich wręcz zniewalający. Woń ta, razem ze szczególnym ubarwieniem pułapki, zwabia ofiary na brzeg „dzbanuszka”. Lądują na krawędzi stromo opadającej ścianki - której powierzchnia jest niewątpliwie nieprzypadkowo wyjątkowo śliska - otoczonej u góry sterczącymi w dół włoskami skutecznie uniemożliwiającymi wszelkie próby ucieczki. Kiedy nieszczęsne stworzenia spadają, co zdarza się prawie zawsze, w głąb tego ciemnego wnętrza, spotykają na jego dnie coś więcej niż czystą wodę. Szczegóły, na które zwrócił mi uwagę Barrie Juniper, są niezmiernie interesujące, pozwolę więc sobie pokrótce je przedstawić.

Ryc. 1.5 Projektoid przypominający naczynie. Pułapka dzbanecznika Nepenthes pervillei z Seszeli

 

Złapanie owada to dopiero początek, dzbanecznik nie ma wszak szczęk ani mięśni i zębów, by go rozdrobnić na kęsy nadające się do strawienia. Być może rośliny mogły wykształcić zęby i żujące szczęki, ale w naturze spotyka się prostsze rozwiązanie. Woda zebrana w pułapce dzbanecznika jest znakomitym środowiskiem dla najrozmaitszego robactwa. Stworzenia te żyją wyłącznie w maleńkich zbiornikach wodnych zamkniętych właśnie w liściach dzbanecznika i są wyposażone w szczęki, których roślinie brakuje. Ciała złapanych w pułapkę ofiar zostają pożarte przez owadzich wspólników i rozłożone przez ich soki trawienne. A roślina korzysta ze składników odżywczych pochodzących z rozkładających się resztek oraz z wydalin żarłocznych stworzeń - związki te przenikają bez przeszkód z wody do tkanek rośliny przez cienką wyściółkę pojemnika.

Dzbanecznik nie ogranicza się do biernego przyjmowania usług żarłocznych organizmów, którym zdarzy się wpaść do jego małego prywatnego basenu. Roślina ta dokłada starań, by otrzymały one w zamian to, co im potrzebne do życia. Wystarczy zbadać wodę w „dzbanuszku”, by stwierdzić uderzający fakt. Nie jest ona wcale stęchła, czego można by oczekiwać po stojącym zbiorniku, ale wyjątkowo bogata w tlen. Bez tlenu te tak ważne dla dzbanecznika organizmy nie mogłyby tu przetrwać. Skąd jednak się on bierze? Okazuje się, że to sam dzbanecznik jest źródłem tlenu; zupełnie jakby został zaprojektowany tak, by wzbogacać wodę w tlen. Komórki wyściełające „dzbanuszek” od wewnątrz zawierają więcej chlorofilu niż leżące po zewnętrznej stronie - wystawione na promienie słoneczne i świeże powietrze. Tę dziwną na pierwszy rzut oka sytuację da się jednak wytłumaczyć: komórki warstwy wewnętrznej wyspecjalizowały się w wytwarzaniu tlenu uwalnianego wprost do wody zgromadzonej w „dzbanuszku”. Dzbanecznik nie wyzyskuje niezbędnych mu szczęk, on je zatrudnia, wypłacając się uczciwie tlenem.

Jest wiele innych projektoidów-pułapek. Muchołówka jest równie imponująca jak dzbanecznik, a przy tym udoskonalona przez elementy ruchome. Owad uruchamia pułapkę, dotykając włosków czuciowych, co powoduje zamknięcie się bezlitosnych „szczęk”. Pajęczyna to najbardziej znany rodzaj pułapek sporządzanych przez zwierzęta - poświęcimy im należną uwagę w następnym rozdziale. Podwodnym odpowiednikiem pajęczyn są siatki zakładane przez zamieszkujące strumyki larwy chruścików. Są one również słynne jako budowniczowie niezwykłych domków. Poszczególne gatunki wykorzystują kamyczki, liście lub niewielkie muszle ślimaków.

Często spotykanym widokiem w różnych częściach świata są lejkowate pułapki mrówkolwów. Ten budzący grozę stwór jest larwą - czyż można sobie wyobrazić subtelniejsze imię? - owada siatkoskrzydłego. Mrówkolew czatuje, ukryty pod cienką warstwą piasku na dnie swojego dotka, na mrówki i inne owady wpadające w jego pułapkę. Dołek ten ma niemal idealnie stożkowaty profil, co sprawia, że ofiarom niezmiernie trudno się z niego wydostać. Kształt ten powstaje wcale nie dzięki przyjętemu z góry projektowi, ale pewnym prostym prawom fizyki związanym ze sposobem, w jaki kopią mrówkolwy. Z dna zagłębienia wyrzucają piasek na jego krawędź gwałtownymi ruchami głowy. Piasek zachowuje się tak samo jak ten w górnej części odwróconej klepsydry: formuje idealny stożek o łatwym do wyliczenia nachyleniu ścian.

Rycina 1.6 pokazuje kolejne naczynia. Wiele os samotnic składa jaja na ciele żywych ofiar i żądli je, by sparaliżować ich układ nerwowy, a następnie przenosi do kryjówki - jest nią zazwyczaj jakaś norka. Następnie zamyka wejście do niej tak, aby była niewidoczna; pozostająca we wnętrzu wykluta z jaja larwa odżywia się zawsze świeżym pokarmem, aż wreszcie jako uskrzydlony dorosły osobnik wyfruwa z ukrycia, by dopełnić cyklu życiowego. Wiele gatunków os samotnic kopie norki w ziemi. Osa kopułka lepi swoją „norkę” z gliny - niewielki, nie rzucający się w oczy, pękaty pojemnik, przytwierdzony do gałązki. Podobnie jak pułapka dzbanecznika, zająłby on z pewnością korzystne miejsce w naszej punktacji za efektywność wykonania. Pszczoły samotnice wykazują podobne zachowanie - również składają jaja w pojedynczych norkach, tyle że karmią swoje larwy nie ciałem gąsienic, lecz pyłkiem roślin. Podobnie jak osy kopułki, wiele gatunków pszczół miesierek buduje własne komórki lęgowe. Jedną z nich widać na rycinie 1.6a - okrągłe naczynie sporządzone jednak nie z gliny, ale z drobnych, spojonych ze sobą kamieni.

Ryc. 1.6 Projektoidy przypominające naczynia wykonane przez zwierzęcych artystów: osę kopułkę (a) i pszczołę miesierkę (b)

 

Oprócz tego, że przypomina do złudzenia twór rąk ludzkich, coś jeszcze decyduje o jego niezwykłości. Otóż choć na zdjęciu widać tylko jedno naczynie, w istocie są tam jeszcze trzy inne. Pszczoła zamknęła je i starannie oblepiła utwardzonym błotem tak, by nie odróżniały się od skały, na której zostały umieszczone. Żaden drapieżnik nigdy nie znajdzie rozwijających się w takim ukryciu larw. Pojemniki widoczne na zdjęciu odkrył w Izraelu mój znajomy Christopher O’Toole tylko dlatego, że ostatniego pszczoła z jakichś przyczyn nie dokończyła.

Takie owadzie „naczynia” noszą nieodparte piętno projektu. W przeciwieństwie do pułapek dzbanecznika, zostały rzeczywiście starannie wykonane przez niezwykle sprawnego - choć nieświadomego swoich umiejętności - twórcę. Naczynia osy kopułki i pszczoły miesierki są więc, w pewnym sensie, bliższe naczyniom wytwarzanym przez człowieka niż „dzbankom” dzbanecznika. Tyle że ani osy, ani pszczoły nigdy nie zastanawiały się nad projektem swoich wytworów. Chociaż powstały one z gliny lub kamyków w efekcie instynktownych zachowań owadów, proces ten nie różni się znacząco od procesów formowania się ciał tych owadów w czasie rozwoju zarodkowego. Wiem, że to brzmi dziwnie, ale postaram się wszystko wyjaśnić. Układ nerwowy osy rozwija się w taki sposób, by mięśnie, odnóża i żuwaczki wykonywały określone ciągi skoordynowanych ruchów. Odnóża osy wykonują szczególne, zgodne z kierunkiem ruchu zegara ruchy, czego konsekwencją jest zgarnianie gliny i układanie jej w kształt naczynia. Owad najprawdopodobniej nie wie, co robi, ani po co to robi. Nie ma najmniejszego pojęcia o naczyniu jako dziele sztuki, pojemniku, bądź komorze lęgowej. Jego mięśnie po prostu poruszają się tak, jak każą im nerwy, a naczynie jest tego rezultatem. Właśnie dlatego bez wahania - choć z uczuciem zdumienia - zaliczamy naczynia os i pszczół do niezaprojektowanych projektoidów: nie będących efektem zamierzonego aktu twórczego wytwarzających je owadów. W istocie, by pozostać w zgodzie z prawdą, muszę wyznać, że nie mogę wiedzieć na Pewno, że osy nie są obdarzone wolą twórczą i zdolnością tworzenia projektów. Jeśli jednak moje wyjaśnienia wystarczą, by opisać omawiane zjawiska, to można je przyjąć, nawet gdyby owe owady takie cechy posiadały. Tak samo jest z ptasimi gniazdami (ryc. 1.7) i altankami, domkami chruścików i ich sieciami łownymi, ale już nie popiersiami wyrzeźbionymi na stokach góry Rushmore lub narzędziami do tego wykorzystywanymi - te były rzeczywiście zaprojektowane.

Karl von Frisch, słynny austriacki zoolog, który odczytał taniec pszczół, kiedyś napisał: „Jeśli wyobrazimy sobie termity wielkości człowieka, to ich najwyższe termitiery sięgałyby na wysokość większą niż półtora kilometra - czterokrotnie więcej, niż mierzy Empire State Building w Nowym Jorku”. Wieżowce na rycinie 1.8 zbudowały australijskie termity kompasowe. Zostały one tak nazwane dlatego, że ustawiają swoje termitiery zawsze na osi północ-południe, dzięki czemu mogą służyć za kompas zagubionym wędrowcom (podejrzewam, że tak samo jest z antenami satelitarnymi - w Wielkiej Brytanii wszystkie zdają się zwrócone na południe).

Ryc. 1.7 Projektoidy - prawdziwe cuda rzemiosła: gniazdo ptasiego tkacza - wikłacza (a) i krawca (b) razem ze swoim wytwórcą, krawczykiem cejlońskim Orthotomus sutorius.

 

Dzięki takiemu usytuowaniu szeroką ścianę termitiery ogrzewa poranne i wieczorne słońce. Palące promienie południowego słońca nie wyrządzają jej natomiast szkody - ku północy (skąd świeci słońce w południe na półkuli południowej) wystawiona jest bowiem tylko jej wąska krawędź, łatwo o wrażenie, że termity musiały to wszystko starannie przemyśleć. Jednak zasada decydująca o tym, że gniazda termitów wydają się nam bardzo inteligentnie skonstruowane, jest dokładnie taka sama jak przy pozornie przemyślanej konstrukcji ich szczęk i odnóży. Nic z tego nie zostało zaprojektowane. Wszystko to tylko projektoidy.

Wytwory zwierząt takie jak domki chruścików, gniazda ptaków czy pojemniki pszczół miesierek nie tylko fascynują - zajmując specjalne miejsce wśród innych projektoidów, budzą prawdziwą ciekawość. Określenie „projektoid” odnosi się pierwotnie do żywych orga...

Zgłoś jeśli naruszono regulamin