bfp520.pdf

(156 KB) Pobierz
Genesys
SIEGET 45
BFP 520
NPN Silicon RF Transistor
3
For highest gain low noise amplifier
at 1.8 GHz and 2 mA / 2 V
Outstanding G ms = 23 dB
Noise Figure F = 0.95 dB
4
For oscillators up to 15 GHz
2
Transition frequency f T = 45 GHz
1
VPS05605
Gold metallization for high reliability
45 - Line
45 GHz f T - Line
ESD : E lectro s tatic d ischarge sensitive device, observe handling precaution!
Type
Marking
Pin Configuration
Package
BFP 520
APs
1 = B
2 = E
3 = C
4 = E
SOT-343
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
V CEO
2.5
V
Collector-base voltage
V CBO
10
Emitter-base voltage
V EBO
1
Collector current
I C
40
mA
Base current
I B
4
Total power dissipation, T S
105 °C 1)
P tot
100
mW
Junction temperature
T j
150
°C
Ambient temperature
T A
-65 ... 150
Storage temperature
T stg
-65 ... 150
Thermal Resistance
Junction - soldering point
R thJS
450
K/W
1 T S is measured on the emitter lead at the soldering point to the pcb
1
Jun-09-2000
SIEGET
199616056.038.png 199616056.039.png 199616056.040.png 199616056.041.png 199616056.001.png 199616056.002.png 199616056.003.png 199616056.004.png 199616056.005.png 199616056.006.png 199616056.007.png
SIEGET 45
BFP 520
Electrical Characteristics at T A = 25°C, unless o therwise specified.
Parameter
Symbol
Values
Unit
min. typ. max.
DC characteristics
Collector-emitter breakdown voltage
I C = 1 mA, I B = 0
V (BR)CEO
2.5
3
3.5 V
Collector-base cutoff current
V CB = 5 V, I E = 0
I CBO
-
-
200 nA
Emitter-base cutoff current
V EB = 1 V, I C = 0
I EBO
-
-
35
µA
DC current gain
I C = 20 mA, V CE = 2 V
h FE
70
110
200 -
AC characteristics (verified by random sampling )
Transition frequency
I C = 30 mA, V CE = 2 V, f = 2 GHz
f T
-
45
-
GHz
Collector-base capacitance
V CB = 2 V, f = 1 MHz
C cb
-
0.06
-
pF
Collector-emitter capacitance
V CE = 2 V, f = 1 MHz
C ce
-
0.3
-
Emitter-base capacitance
V EB = 0.5 V, f = 1 MHz
C eb
-
0.35
-
Noise figure
I C = 2 mA, V CE = 2 V, Z S = Z Sopt ,
f = 1.8 GHz
F
-
0.95
-
dB
Power gain, maximum stable 1)
I C = 20 mA, V CE = 2 V, Z S = Z Sopt , Z L = Z Lopt ,
f = 1.8 GHz
G ms
-
23
-
Insertion power gain
I C = 20 mA, V CE = 2 V, f = 1.8 GHz,
Z S = Z L = 50
| S 21 | 2
-
21
-
dB
Third order intercept point at output
V CE = 2 V, f = 1.8 GHz, Z S = Z Sopt , Z L = Z Lopt ,
I C = 20 mA
I C = 7 mA
IP 3
dBm
-
-
25
17
-
-
1dB compression point
V CE = 2 V, f = 1.8 GHz, Z S = Z Sopt , Z L = Z Lopt ,
I C = 20 mA
I C = 7 mA
P -1dB
-
-
12
5
-
-
1 G ms = | S 21 / S 12 |
2
Jun-09-2000
199616056.008.png 199616056.009.png 199616056.010.png 199616056.011.png 199616056.012.png 199616056.013.png 199616056.014.png 199616056.015.png
SIEGET 45
BFP 520
Comm on Emitter S-Parameters
f
S 11
S 21
S 12
S 22
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
V CE = 2 V, / C = 20 mA
0.01
0.1
0.5
1
2
3
4
5
6
0.7244
0.7251
0.6368
0.4768
0.2816
0.2251
0.2552
0.3207
0.3675
-0.7
-8.4
-40.7
-73.6
-123.8
-166.1
156.2
133.6
118.7
32.273
31.637
27.293
19.601
11.021
7.481
5.636
4.488
3.683
178.6
171.4
140.7
113.5
84.9
67.6
53.1
39.7
27.5
0.0007
0.0041
0.0194
0.0351
0.0057
0.0788
0.0994
0.1177
0.1343
69.4
92.8
75.9
66.5
56.3
49.2
41.5
32.9
24.7
0.9052
0.9363
0.8523
0.6496
0.3818
0.2407
0.1544
0.0951
0.0545
1.2
-4.4
-26.7
-46.1
-64.6
-73.6
-95.3
-128.9
177.6
Comm on Emitter Noise Parameters
f
F min 1)
G a 1)
Γ
opt
R N
r n
F 50
2)
| S 21 | 2 2)
GHz
dB
dB
MAG
ANG
-
dB
dB
V CE = 2 V, I C = 2 mA
0.9
1.8
2.4
3
4
5
6
0.72
0.95
1.07
1.31
1.35
1.71
1.95
21.5
20.1
16.1
14.5
11.6
9.5
8.1
0.64
0.49
0.45
0.41
0.26
0.14
0.12
14
30
41
54
82
128
151
21.5
19.1
18.1
16.5
12.5
9.1
8.1
0.43
0.38
0.36
0.33
0.25
0.18
0.16
1.75
1.55
1.61
1.71
1.61
1.85
1.95
16.11
15.14
14.07
13.13
11.49
9.87
8.28
V CE = 2 V, I C = 5 mA
0.9
1.8
2.4
3
4
5
6
0.89
1.08
1.12
1.32
1.35
1.61
1.81
22.1
20.5
18.1
16.2
13.5
11.5
10.5
0.49
0.38
0.34
0.29
0.16
0.08
0.07
12
22
33
45
71
120
150
16.1
14.1
14.1
13.5
11.1
10.1
8.1
0.32
0.28
0.28
0.27
0.22
0.21
0.16
1.51
1.38
1.41
1.51
1.45
1.65
1.81
21.94
19.34
17.54
16.01
13.82
11.93
10.23
1) Input matched for minimum noise figure, output for maximum gain 2) Z S = Z L = 50
For more and detailed S- and Noise-parameters please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon Technologies Application Notes CD-ROM or see Internet:
http://www.infineon.com/products/discrete/index.htm
3
Jun-09-2000
199616056.016.png 199616056.017.png 199616056.018.png 199616056.019.png 199616056.020.png 199616056.021.png 199616056.022.png 199616056.023.png 199616056.024.png 199616056.025.png 199616056.026.png 199616056.027.png 199616056.028.png 199616056.029.png
SIEGET 45
BFP 520
SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) :
Transistor Chip Data
IS =
15
fA
BF =
235
-
NF =
1
-
VAF =
25
V
IKF =
0.4
A
ISE =
25
fA
NE =
2
-
BR =
1.5
-
NR =
1
-
VAR =
2
V
IKR =
0.01
A
ISC =
20
fA
NC =
2
-
RB =
11
IRB =
-
A
RBM =
7.5
RE =
0.6
RC =
7.6
CJE =
235
fF
VJE =
0.958
V
MJE =
0.335
-
TF =
1.7
ps
XTF =
10
-
VTF =
5
V
ITF =
0.7
mA
PTF = 50
deg
CJC =
93
fF
VJC =
0.661
V
MJC =
0.236
-
XCJC = 1
-
TR =
50
ns
CJS = 0
fF
VJS =
0.75
V
MJS = 0.333
-
XTB = -0.25
-
EG =
1.11
eV
XTI =
0.035
-
FC =
0.5
-
TNOM
298
K
Package Equivalent Circuit:
L BI =
0.47
nH
L BO =
0.53
nH
L EI =
0.23
nH
L EO =
0.05
nH
L CI =
0.56
nH
L CO =
0.58
nH
C BE =
136
fF
C CB =
6.9
fF
C CE =
134
fF
Valid up to 6GHz
The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit,
both leads are combined in one electrical connection.
For examples and ready to use parameters please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet:
http://www.infineon.com/products/discrete/index.htm
4
Jun-09-2000
199616056.030.png 199616056.031.png 199616056.032.png 199616056.033.png 199616056.034.png 199616056.035.png 199616056.036.png
SIEGET 45
BFP 520
For non-linear simulation:
Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
Simulation of the package is not necessary for frequencies < 100MHz.
For higher frequencies please add the wiring of the package equivalent circuit
around the non-linear transistor.
Advantages of the common emitter configuration:
Higher gain because of lower emitter inductance.
Power is dissipated via the grounded emitter leads, because the chip is mounted
on the copper emitter leadframe.
Please note, that the broadest lead is the emitter lead.
5
Jun-09-2000
199616056.037.png
Zgłoś jeśli naruszono regulamin