Sprawozdanie ilustracji zasady zachowania pedu.doc

(55 KB) Pobierz
Wydział: Mechaniczno-Technologiczny

Wydział: Mechaniczno-Technologiczny                                                        Dzień: Środa

Kierunek: MiBM (dzienne)                                                                                    Godzina: 16.00

Grupa dziekańska: 5

Semestr: 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Laboratorium Mechaniki Ogólnej

 

 

Ćwiczenie: E.

 

 

Ilustracja zasady zachowania pędu.

 

 

 

 

 

 

 

 

 

 

 

Sekcja nr. 5:

1.     Zawisz Roman

2.     Śliwiak Paweł

3.     Szymiczek Krzysztof

4.     Słomka Jan

5.     Wieczorek Michał

6.     Omozik Paweł

7.      Peretiatkowicz Adam

 

I.                    Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie prędkości pocisku za pomocą wahadła balistycznego oraz ilustracja zasady zachowania pędu.

 

II.                 Podstawy teoretyczne

Wahadło balistyczne skrętne stanowi masywne ciało o znacznym i regulowanym momencie bezwładności przytwierdzone do sprężystego drutu.

Pocisk wystrzelony z odpowiedniego urządzenia strzelającego trafia w miseczkę A wbijając się w nią. Powoduje to odchylenie wahadła od położenia równowagi. Energia kinetyczna wahadła stopniowo przechodzi w energię potencjalną sprężyście skręconego drutu B. Gdy energia potencjalna związana z siłami sprężystości osiąga maksimum, zaczyna się proces odwrotny : energia potencjalna przechodzi w energię kinetyczną. W ten sposób wahadło zaczyna wykonywać drgania wokół osi przechodzącej przez skręcany drut. Pomiar odpowiednich parametrów tego ruchu drgającego pozwala wyznaczyć prędkość pocisku. Rozważając ruch wahadła pominięty został wpływ oporów (dla zminimalizowania wpływu oporu powietrza - np. jego zawirowań wywołanych przypadkowymi czynnikami - wahadło znajduje się w specjalnej obudowie). Znaczy to, że czas t(k), po którym drgania wahadła ustają, jest dużo większy od okresu drgań T (tk>>T).

Układ "wahadło - pocisk" można opisać za pomocą dwóch zasad, zasady zachowania pędu i zasady zachowania energii mechanicznej.

Korzystając z tego, że zderzenie wahadła (jego miseczki wypełnione plasteliną) z pociskiem jest całkowicie niesprężyste (pocisk wbija się w plastelinę) można napisać równanie zachowania momentu pędu

mvr = (Il + mr2)ω

Odkształcenie jakiemu podlega drut wahadła ma charakter sprężysty, zatem zgodnie z prawem Hooke`a moment sił sprężystości M jest proporcjonalny do kąta skręcenia wahadła φ:

M = - kφ

Gdzie: - sztywność skrętna drutu

              l – długość drutu

              d – średnica drutu

              G – moduł sprężystość postaciowej (dla stali G=8,5*104 Mpa)

Należy zwrócić uwagę, że jeżeli odkształcenie nie przekracza granicy proporcjonalności określonej prawem Hooke`a, to drgania wahadła są izochronicznie niezależne od ich amplitudy, czyli kąt skręcenia wahadła może być duży (nawet większy od 2π)

Ogólne rozwiązanie tego równania ma postać:

φ = φmaxcos(ωt + α) ;

gdzie: jmax – amplituda drgań

              w - prędkość kątowa

              a - faza początkowa ruchu

Po przekształceniach otrzymujemy ostatecznie, że:

 

           4πφmaxMT1(R12 - R22)



v =                                               

                mr (T12 - T22)               

 

 

 

 

III.             Przebieg ćwiczenia.

1.     Przygotowanie układu do pomiarów.

-          Wahadło balistyczne skrętne ustawić na stanowisku pomiarowym i za pomocą poziomicy i regulowanych nóżek wypoziomować przyrząd.

-          Uziemić przyrząd.

-          Sprawdzić, czy czujnik fotoelektryczny jest połączony z gniazdem wejściowym milisekundomierza.

-          Włączyć urządzenie do sieci 220 V.

-          Wcisnąć klawisz "SIEC", sprawdzić, czy wszystkie wskaźniki miernika wyświetlają cyfrę zero, a także czy świeci się żarówka czujnika fotoelektrycznego.

-          Sprawdzić naciąg drutu rozpiętego między wspornikiem górnym i dolnym (ew. skorygować go za pomocą odpowiednich śrub).

-          Ustawić rysę znajdującą się na miseczce z plasteliną naprzeciw punktu „O" na skali kątowej za pomocą śruby kontrującej znajdującej się na wsporniku górnym (wyzerować wahadło).

-          Odchylić ręką wahadło o kąt 15° - 200 i sprawdzić czy milisekundomierz rejestruje liczbę i czas drgań wahadła (sprawdzić, czy wodzik 14 może przecinać strumień światła wysyłany przez żarówkę czujnika fotoelektrycznego; ewentualnie należy skorygować jego położenie).

-          Przygotować wagę laboratoryjną do pomiarów.

-          Odkręcić cztery wkręty mocujące przeźroczystą osłonę. Zdjąć ją.

-          Odkręcić obie miseczki z plasteliną i sprawdzić za pomocą wagi, czy mają taką samą masę -ewentualnie uzupełnić plastelinę.

-          W miseczce, która umieszczona będzie naprzeciw urządzenia strzelającego, doprowadzić plastelinę do stanu plastyczności (np. nagrzewającą suszarką). 

-          Przykręcić obie miseczki, umocować osłonę i ponownie wyzerować wahadło.

-          Sprawdzić sprawność urządzenia spustowego.

 

2.     Pomiary

a)      Maksymalnie zsunąć oba ciężarki i zakontrować je (R2=min)

b)     Wystrzelić pocisk z urządzenia strzelającego.

c)      Odczytać na skali kątowej maksymalny kąt wychylenia wahadła (jmax).  Uwaga: pocisk musi się wbić w plastelinę).

d)     Po wyzerowaniu miernika czasu odchylić ręką wahadło na odczytany kąt jmax  i zwolnić go. 

e)      Zmierzyć czas dziesięciu (lub więcej) wahnięć w odpowiednim momencie używając klawisza „STOP".

f)       Czynności (d) i (e) powtórzyć 2 razy, aby wyeliminować możliwość popełnienia błędu grubego (otrzymujemy T2).

g)     Maksymalnie rozsunąć ciężarki (R1=max) i powtórzyć czynności wg punktów (d), (e), (f), aby otrzymać T1.

h)     Zmierzyć masę pocisku.

i)       Zmierzyć odległości r1 i r2.

j)       Zmierzyć r (odległość między środkiem wbitego pocisku a osią obrotu).

k)     Przeprowadzić co najmniej 10 wystrzałów.

 

 

 

IV.            Wyniki pomiarów 

 

Lp.

R2 = min = 0,02 [m]

R1 = max = 0,09 [m]

φmax [rad]

10T2[s]

T2 [s]

φmax [rad]

10T1[s]

T1 [s]

1.

0,7854p

35,937

3,5937

0,55851p

59,761

5,9761

2.

0,7854p

35,952

3,5952

0,55851p

59,804

5,9804

3.

0,7854p

35,944

3,5944

0,55851p

59,738

5,9738

 

Lp.

m [kg]

R2 [m]

R1 [m]

r [m]

v [m/s]

1.

...
Zgłoś jeśli naruszono regulamin