pdfbook.pdf

(1204 KB) Pobierz
88782196 UNPDF
Contents
1 Functions 2
1.1 The Concept of a Function . . . . . . . . . . . . . . . . . . . . 2
1.2 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . 12
1.3 Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . 19
1.4 Logarithmic, Exponential and Hyperbolic Functions . . . . . . 26
2 Limits and Continuity 35
2.1 Intuitive treatment and definitions . . . . . . . . . . . . . . . 35
2.1.1 Introductory Examples . . . . . . . . . . . . . . . . . . 35
2.1.2 Limit: Formal Definitions . . . . . . . . . . . . . . . . 41
2.1.3 Continuity: Formal Definitions . . . . . . . . . . . . . 43
2.1.4 Continuity Examples . . . . . . . . . . . . . . . . . . . 48
2.2 Linear Function Approximations . . . . . . . . . . . . . . . . . 61
2.3 Limits and Sequences . . . . . . . . . . . . . . . . . . . . . . . 72
2.4 Properties of Continuous Functions . . . . . . . . . . . . . . . 84
2.5 Limits and Infinity . . . . . . . . . . . . . . . . . . . . . . . . 94
3 Dierentiation 99
3.1 The Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.3 Dierentiation of Inverse Functions . . . . . . . . . . . . . . . 118
3.4 Implicit Dierentiation . . . . . . . . . . . . . . . . . . . . . . 130
3.5 Higher Order Derivatives . . . . . . . . . . . . . . . . . . . . . 137
4 Applications of Dierentiation 146
4.1 Mathematical Applications . . . . . . . . . . . . . . . . . . . . 146
4.2 Antidierentiation . . . . . . . . . . . . . . . . . . . . . . . . 157
4.3 Linear First Order Dierential Equations . . . . . . . . . . . . 164
i
88782196.001.png
ii
CONTENTS
4.4 Linear Second Order Homogeneous Dierential Equations . . . 169
4.5 Linear Non-Homogeneous Second Order Dierential Equations 179
5 The Definite Integral 183
5.1 Area Approximation . . . . . . . . . . . . . . . . . . . . . . . 183
5.2 The Definite Integral . . . . . . . . . . . . . . . . . . . . . . . 192
5.3 Integration by Substitution . . . . . . . . . . . . . . . . . . . . 210
5.4 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . 216
5.5 Logarithmic, Exponential and Hyperbolic Functions . . . . . . 230
5.6 The Riemann Integral . . . . . . . . . . . . . . . . . . . . . . 242
5.7 Volumes of Revolution . . . . . . . . . . . . . . . . . . . . . . 250
5.8 Arc Length and Surface Area . . . . . . . . . . . . . . . . . . 260
6 Techniques of Integration 267
6.1 Integration by formulae . . . . . . . . . . . . . . . . . . . . . . 267
6.2 Integration by Substitution . . . . . . . . . . . . . . . . . . . . 273
6.3 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . 276
6.4 Trigonometric Integrals . . . . . . . . . . . . . . . . . . . . . . 280
6.5 Trigonometric Substitutions . . . . . . . . . . . . . . . . . . . 282
6.6 Integration by Partial Fractions . . . . . . . . . . . . . . . . . 288
6.7 Fractional Power Substitutions . . . . . . . . . . . . . . . . . . 289
6.8 Tangent x/ 2 Substitution . . . . . . . . . . . . . . . . . . . . 290
6.9 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . 291
7 Improper Integrals and Indeterminate Forms 294
7.1 Integrals over Unbounded Intervals . . . . . . . . . . . . . . . 294
7.2 Discontinuities at End Points . . . . . . . . . . . . . . . . . . 299
7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
7.4 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . 314
8 Infinite Series 315
8.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
8.2 Monotone Sequences . . . . . . . . . . . . . . . . . . . . . . . 320
8.3 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
8.4 Series with Positive Terms . . . . . . . . . . . . . . . . . . . . 327
8.5 Alternating Series . . . . . . . . . . . . . . . . . . . . . . . . . 341
8.6 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
8.7 Taylor Polynomials and Series . . . . . . . . . . . . . . . . . . 354
88782196.002.png
CONTENTS
1
8.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
9 Analytic Geometry and Polar Coordinates 361
9.1 Parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
9.2 Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
9.3 Hyperbola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
9.4 Second-Degree Equations . . . . . . . . . . . . . . . . . . . . . 363
9.5 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 364
9.6 Graphs in Polar Coordinates . . . . . . . . . . . . . . . . . . . 365
9.7 Areas in Polar Coordinates . . . . . . . . . . . . . . . . . . . . 366
9.8 Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . 366
88782196.003.png
Chapter 1
Functions
In this chapter we review the basic concepts of functions, polynomial func-
tions, rational functions, trigonometric functions, logarithmic functions, ex-
ponential functions, hyperbolic functions, algebra of functions, composition
of functions and inverses of functions.
1.1 The Concept of a Function
Basically, a function f relates each element x of a set, say D f , with exactly
one element y of another set, say R f . We say that D f is the domain of f and
R f is the range of f and express the relationship by the equation y = f ( x ).
It is customary to say that the symbol x is an independent variable and the
symbol y is the dependent variable .
Example 1.1.1 Let D f = {a,b,c}, R f = { 1 , 2 , 3 } and f ( a ) = 1 , f ( b ) = 2
and f ( c ) = 3. Sketch the graph of f .
graph
Example 1.1.2 Sketch the graph of f ( x ) = |x| .
Let D f be the set of all real numbers and R f be the set of all non-negative
real numbers. For each x in D f , let y = |x| in R f . In this case, f ( x ) = |x| ,
2
1.1. THE CONCEPT OF A FUNCTION
3
the absolute value of x . Recall that
|x| =
x if x 0
−x if x < 0
We note that f (0) = 0 ,f (1) = 1 and f ( 1) = 1.
If the domain D f and the range R f of a function f are both subsets
of the set of all real numbers, then the graph of f is the set of all ordered
pairs ( x,f ( x )) such that x is in D f . This graph may be sketched in the xy -
coordinate plane, using y = f ( x ). The graph of the absolute value function
in Example 2 is sketched as follows:
graph
Example 1.1.3 Sketch the graph of
f ( x ) =
p
x− 4 .
In order that the range of f contain real numbers only, we must impose
the restriction that x 4. Thus, the domain D f contains the set of all real
numbers x such that x 4. The range R f will consist of all real numbers y
such that y 0. The graph of f is sketched below.
graph
Example 1.1.4 A useful function in engineering is the unit step function,
u , defined as follows:
u ( x ) =
0 if x < 0
1 if x 0
The graph of u ( x ) has an upward jump at x = 0. Its graph is given below.
88782196.004.png
Zgłoś jeśli naruszono regulamin