2-Problems Of Structural Optimization For Post-Buckling Behaviour.pdf
(
1499 KB
)
Pobierz
89009749 UNPDF
Researchpaper
StructMultidiscOptim25,423–435(2003)
DOI10.1007/s00158-003-0330-7
Problems of structural optimization for post-buckling behaviour
B.Bochenek
Abstract A proposal of a new approach to the op-
timal design of structures under stability constraints is
presented.Itisshownthatthestandardproblemofmax-
imizationoftheinstabilityloadmaybemodifiedsoasto
obtainaspecifiedpost-criticalbehaviourofthedesigned
structure.Themodifiedoptimalstructurerepresentssta-
blepost-bucklingbehavioureitherlocally,thatis,inthe
vicinity of the critical point, or for a specified range
of generalized displacements. First, some rigid–elastic
finite-degree-of-freedommodelsareoptimized,givingan
insight into the modified design problems. Then a clas-
sificationofthenewoptimizationproblemsispresented.
Various forms of instability are taken into account and
abroadselectionofobjectiveaswellasconstraintfunc-
tions is proposed. Based on the presented classification
and following the proposed optimization concept, de-
tailed formulations of nonlinear problems of design for
post-bucklingbehaviouraregiven.
imperfectionsare,ingeneral,notincludedinsuchastan-
dard formulation and therefore important information
aboutthebehaviourofadesignedelementafterbuckling
is not provided. Very often the standard optimal struc-
ture represents unstable post-buckling behaviour and is
verysensitivetoimperfections.Thisisadrawbackofthe
design and it indicates that the combination of geomet-
rically nonlinear analysis with the design procedure is
necessary, especially from a practical point-of-view. Be-
causeofitscomplexity,thisareaofresearchhasnotbeen
broadly investigated so far. Only recently have papers
beenpublisheddealingwiththeoptimizationofgeomet-
ricallynonlinearstructuresexposedtoalossofstability
(Godoy1996;Mr´ozandPiekarski1996,1998;Perryand
Gurdal 1996; Pietrzak 1996; Cardoso etal. 1997; Sousa
etal. 1999; Sorokin and Terentiev 2001). It has been
shownthatifgeometricalnonlinearityisallowedforand
nonlinearinstabilityanalysisisperformed,moreaccurate
informationaboutthebehaviouroftheoptimizedstruc-
turecanbeprovided.Itispossibletoevaluatethequality
of the design and, if necessary, to reject solutions that
are not applicable. Furthermore, it is possible to imple-
ment nonlinear constraints into the formulation of the
optimization problem and hence to modify the design.
Post-bucklingconstraintsofaspecialformthatdepends
on the type of instability are added to the mathemat-
ical programming problem, which allows the nonlinear
equilibriumpathoftheoptimizedstructuretobealtered
andastablepost-bucklingpathtobecreated.Thiscon-
ceptwasproposedbyBochenek(1993),andthenapplied
tosolvingmanynonlinearoptimizationproblems(Boch-
enek 1996, 1997a,b, 1999a,b; Bochenek and Kru˙zelecki
2001;BochenekandBielski2001).
Key words instability, post-buckling behaviour, opti-
maldesign
1
Introduction
Themaximizationoftheinstabilityloadforaprescribed
volume of a designed element is a standard problem of
optimizationunderstabilityconstraints.Theanalysisof
nonlinear post-buckling behaviour and the influence of
Received: 8January 2002
Published online:30October 2003
Springer-Verlag2003
B.Bochenek
InstituteofMechanicsandMachineDesign,CracowUniversity
ofTechnology,JanaPawlaII37,31-864Krakow,Poland
e-mail:Bogdan.Bochenek@pk.edu.pl
2
A concept of modified optimization
Theaimofthissectionistopresenttheideaofanewap-
proachtooptimizationagainstinstability.Severalsimple
rigid–elasticfinite-degree-of-freedommodelsthatconsist
424
of rigid rods connected by elastic joints and equipped
withextensionalandrotationalspringsarechosenforthis
purpose. For each ofthem, an instability analysisbased
onenergyconsiderationsisperformed,leadingtoanan-
alyticalexpressionfortheloadasafunctionofthegener-
alizeddisplacementthatdescribesthenonlinearequilib-
riumpath.
The first model shown in Fig.1 consists of two rigid
rods connected by an elastic joint. A rotational spring
of stiffness
C
and an extensional spring
K
,bothwith
linearly elastic characteristics,are added to the system.
The model is loaded by a conservative force
P
that re-
tainsitsdirectionafterbuckling.Iftheangle
ϕ
ischosen
asthegeneralizeddisplacementthatcontrolsthenonlin-
ear post-critical deformation, the total potential energy
ofthesystemcanbewrittenas
Π
=
1
2
Cϕ
2
+
1
2
K
(
L
sin
ϕ
)
2
−
P
(
L
+
D
−
L
cos
ϕ
−
D
cos
ψ
)
.
(1)
Fig. 2 Post-criticalpathsforselectedvaluesofγ
Fromthestationarityconditiond
Π/
d
ϕ
=0followsanex-
pressionfor theload
p
vs displacement
ϕ
that describes
thenonlinearequilibriumpath:
problemcanbe formulated.Foragivenvalueof
C
, find
γ
soastomaximizethecriticalloadandsimultaneously
assure stable post-buckling behaviour of the optimized
structure:
maximize
p
cr
(
γ
)=(1+
γ
)
κ
1+
κ
2
−
sin
2
ϕ
ϕ
+
1
2
γ
sin2
ϕ
p
(
ϕ
)=
,
(2)
sin
2
ϕ
sin
ϕ
+
1
κ
2
−
2
sin2
ϕ
,
κ
inwhichageometricalrelationanddimensionlessquanti-
tiesareintroducedas
subjectto
∂
2
p
∂ϕ
2
(0;
γ
)
≥
0
.
(5)
sin
ψ
=
1
κ
sin
ϕ, p
=
PL
C
, γ
=
KL
2
C
,
κ
=
D
Solvingtheproblemformulatedabove,inwhichthepost-
bucklingconstraintissetlocallyfor
ϕ
=0,oneobtains
(3)
γ
opt
=
κ
3
+4
κ
2
−
3
The critical (bifurcation) load can be found directly
from(2)as
3
+1)
,
(6)
3(
κ
p
cr
=(1+
γ
)
κ
1+
.
(4)
=2
.
0,gives
γ
=
γ
opt
=7
/
9and
p
cr
=32
/
27
.
Thepost-bucklingpathfortheoptimalsolutionisrepre-
sentedinFig.2byathicksolidline.
Ascanbeseenintheaboveexample,byimplementing
anappropriatelocalpost-bucklingconstraintintothefor-
mulationoftheoptimizationproblem,thedesiredmodi-
ficationofthesymmetricpost-criticalpathwasachieved.
Itisworthstressingthatsuchalocalconstraintmaynot
besucientinallcases.Tomakemattersevenmorecom-
plicated, the behaviour of the structure at the critical
pointdoesnothavetobesymmetric.Whatcanbedone
ifthishappens?We shalldiscussthisissuebyanalyzing
another model, shown in Fig.3. Once again the model
consistsoftwobars,butthistimeonlytheoneoflength
L
isrigid.Thelengthofthesecondonecanvaryanditsex-
tensibilityismodelledbyaspring
K
.Thetotalpotential
energyforthemodelisgivenby
κ
κ
If post-critical paths found for various values of the
stiffness
γ
areanalyzed,onecanseefromFig.2thatthe
post-bucklingbehaviourofthesystemcanbeeithersta-
bleorunstabledependingonthevalueof
γ
.Thismeans
thatbyselectingappropriatevaluesof
γ
,thecreationof
aspecifiedbehaviourofthestructureispossible.Hence,
for
γ
as the design variable, the following optimization
Fig. 1 Rigid–elasticone-degree-of-freedomsystem,symmet-
ricbifurcation
2
Cϕ
2
+
1
2
K
(
L
k
−
L
0
)
2
−
PL
(1
−
cos
ϕ
)
,
(7)
L
.
which,for
Π
=
1
425
Fig. 3 Rigid–elasticone-degree-of-freedommodel,asymmet-
ricbifurcation
whichleadsto
p
(
ϕ
)=
ϕ
sin
ϕ
+
γ
[1
−κ
tan
α
+
κ
cot
ϕ
]
−
(8)
κ
cos
α
(
(1
−κ
tan
α
)+
κ
cot
ϕ
Fig. 4 Post-criticalpathsforselectedvaluesofγ
κ
tan
α
+cos
ϕ
−
1)
2
+(
κ
+sin
ϕ
)
2
and
somecases,lossofstabilitycanbetheresultofanincrease
intemperature.Asimplemodelthatisexposedtother-
malbucklingisshowninFig.5.Theextensibilityofabar
axisisrepresentedbyaspringofstiffness
K
andacoe-
cientofthermalexpansion
α
.Thetotalpotentialenergy
ofdeformation(withoutthermalenergy)canbewritten
as
Π
=
1
p
cr
=1+
γ
cos
2
α.
(9)
The definitions of the dimensionless quantities are the
same as in the previous example, and once again, the
maximalcriticalloadsubjecttostablepost-bucklingbe-
haviour is sought. However, the formulation of the op-
timization problem is different. Since the behaviour of
the structure at the critical point is asymmetric, post-
buckling constraints that are independent of each other
for positive and negative values of the generalized dis-
placement must be imposed. In addition, setting con-
straintsthatensuresymmetricbehaviourinthevicinity
ofthecriticalpointisnecessary.Forgivenvalues
C
and
α
,valuesof
γ
and
2
Cϕ
2
+
1
2
K
[
αL
0
T
−
L
+
L
0
]
2
.
(12)
Anonlinearequilibriumpath
t
(
ϕ
) that followsfrom the
stationarityconditionisgivenby
t
(
ϕ
)=
1
γ
cos
ϕ
cos
ϕ
.
(13)
aresoughtforwhichthecriticalload
ismaximalwithrespecttotheconstraintsforcingtheop-
timizedstructuretobehaveinastablewayinaspecified
intervaloftheangulardisplacement
ϕ
:
κ
Thequantitiesin(13)aredefinedas
t
=
αT, γ
=
KL
0
C
.
(14)
maximize
p
cr
(
γ,
κ
)=1+
γ
cos
2
α,
The optimal value of
γ
is sought so as to maximize the
criticaltemperature
t
(strain causedby temperaturein-
subjectto
∂p
∂ϕ
(0;
γ,
κ
)=
κ−
sin
α
cos
α
=0
,
(10)
∂p
∂ϕ
(
ϕ
;
γ,
κ
)sign
ϕ
≥
0or
ϕ
∈
[
ϕ
1
,ϕ
2
]
.
(11)
In Fig.4, selected solutions (for
α
=60
◦
) that fulfill
equality constraint (10) are shown. The optimal solu-
tion
κ
opt
=
√
3
/
4
,γ
opt
=0
.
74
,p
cr
=1
.
185
,
found for
90
◦
,ϕ
2
=90
◦
,
isrepresentedbyathicksolidline.
In the examples discussed above, instability was
caused by applied externalforces.Itisknownthatin
−
Fig. 5 Rigid–elastic one-degree-of-freedom model, thermal
buckling
γ
sin
ϕ
cos
2
ϕ
+
1
ϕ
−
ϕ
1
=
426
crement
T
) subject to stable post-critical behaviour of
thesystem:
inginpost-criticalregime.Althoughtheproblemisnon-
conservative, the static criterion of stability is sucient
aslongastheanalysisislimitedtonegativevaluesof
η
.
Fromtheequationofequilibriumonecanobtain
maximize
t
cr
=
1
γ
,
∂
2
t
∂ϕ
2
(0;
γ
)
Cϕ
+
KL
2
sin
ϕ
cos
ϕ
=
PL
cos
ηϕ
sin
ϕ
−
subjectto
≥
0
.
(15)
PL
sin
ηϕ
cos
ϕ,
(16)
Solving(15)oneobtains
γ
opt
=5
/
3
,t
cr
=3
/
5,andthe
post-buckling path for the optimal solution is given by
athicksolidlineinFig.6.
The results obtained so far show that by changing
quantities that describe the stiffness of the structure or
its geometry, the post-buckling behaviour can be modi-
fied and the desired stable behaviourafter buckling can
beobtained.Itisknownthatthedesignvariablesinthe
modifieddesignproblemscanalsobechosenfromquan-
titiesdescribingadditionalsupportoradditionalloading.
Thenextexampleshowsthatevenaparametercontrol-
ling the behaviour of the loading after buckling can be
a design variable. The analyzed structure is shown in
Fig.7. The quantity
η
describes the direction of load-
which leads to (the former definitions of dimensionless
quantitieshold)
p
(
ϕ
)=
ϕ
+
γ
sin
ϕ
cos
ϕ
sin(1
−
η
)
ϕ
.
(17)
Foragiven
γ
thefollowingmodifieddesignproblem,
maximize
p
cr
(
η
)=
1+
γ
1
−
η
,
subjectto
∂
2
p
∂ϕ
2
(0;
η
)
≥
0
,
(18)
leadstotheoptimalvalueofthedesignvariable
η
,
2
γ
η
opt
=1
−
1+
γ
.
(19)
√
2
,p
cr
=
√
2).
Summarizing the discussion of this section, one can
state that modification of the standard optimization
problem is possible and the proposed approach allows
the specified behaviour of the optimized structure after
buckling to be obtained. The modified optimal struc-
tureexhibitsstablepost-criticalbehavioureitherlocally,
−
Fig. 6 Post-criticalpathsforselectedvaluesofγ
Fig. 7 Rigid–elastic one-degree-of-freedom model, buckling
undersubtangentialforce
Fig. 8 Post-criticalpathsforselectedvaluesofη
Selectedpost-bucklingpathsfor
γ
=1areshowninFig.8,
inwhichthethicksolidlinerepresentstheoptimalsolu-
tion(
η
opt
=1
427
thatis,inthevicinityofthecriticalpointorinspecified
range of a generalized displacement. Moreover various
cases of loadings or design variables show that the im-
plementation of nonlinear post-buckling analysis in the
formulationofoptimizationproblemsopensmanypossi-
bilitiesfornewdesignproblems.Theproposednewcon-
cept ofoptimizationunderstability constraintsiscalled
themodifiedoptimization.
structuresexposedtoelasticinstabilitycanbeclassified
according to the form of instability. Selected objective
functions for standard and modified problems of struc-
tural optimization against instability are presented in
Figs.10and11.Thefollowingnotationwasappliedtode-
scribeparticularoptimizationtasks:
•
Upper-caseletters–typeofinstabilityloading:B-Bi-
furcation,M-Multimodalbifurcation,S-Snap-through
loading,L-Lowercriticalload,U-Uppercriticalload-
ing (leading to exhaustion of carrying capacity),
F-Flutter load, O-denotes the absence of a relevant
formulation;
3
General classification
Inthemodifieddesignproblems,themostimportantde-
cision to be made is the choice of post-buckling con-
straints.Onecanimposetheseconstraintseitherlocally
(i.e. in the vicinity of the critical point) orfor the spec-
ified rangeofageneralizeddisplacement.The latterap-
proachiscalled“extendedlocal”here.Ifconstraintsare
set for any specific value of a generalized displacement,
it is called a “global” approach. The concept of post-
bucklingconstraintsispresentedinFig.9.
The design variables in the modified design prob-
lemcanbechosenfromquantitiesthatdescribethestiff-
ness of a structure, the shape of its cross-sectionor the
shapeofitsaxis,additionalactiveorpassive(additional
support)loads,andeventhebehaviouroftheloadafter
buckling.
Theobjectiveinthemodifieddesignproblemisusu-
allythesameasinthestandardproblemofoptimization
againstinstability,i.e.,bifurcationorsnap-throughload.
Sincenonlinearanalysisisallowedfor,theobjectivecan
alsobechosenasthemaximalloadonthenonlinearpost-
buckling path or the minimal load if the maximal load
isabsent.Whendesignvariablesdonotaffectthebuck-
lingloadbutcanchangethepost-criticalbehaviour,the
objectivecanbechosenasaspecifiedfunction.
Selecting the objective now and implementing the
post-buckling constraints, many new modified design
tasks may be proposed. These modified problems for
•
Lower-case letters – type of formulation: s-standard
formulation,m-modifiedformulation;
•
Superscripts – e-elasticity (modified problems can
be formulated for inelastic instability and then p-
plasticity,c-creepareused), (1)-singlecriterionopti-
mization,(2)-multi-criteriaoptimization;
•
Subscripts – 2-second order bifurcation, o-objective
function different from critical load, d-displacement
forsnap-throughloadastheobjective;
•
Lower-caseletters in parentheses – type of approach
for post-buckling constraints:(l)-local approach,(f)-
extended local approach (for finite interval), (g)-
globalapproach.
4
Detailed formulations
Based on the presented classification and following the
proposedoptimization concept,detailed formulationsof
selected nonlinear problems of design for post-buckling
behaviour are given. The particular tasks are defined
withinthegroupsofproblemsspecifiedinSect.3.Math-
ematicalformulaeforthosetasksarepresented,aswellas
a graphical illustration of each subproblem. The figures
show the results of application of the modified formula-
tioncomparedwiththeresultsofthestandardoptimiza-
tion.
4.1
Structuraloptimizationagainst instabilityleading
to maximizationof single buckling load
Maximization of the bifurcation load subject to a con-
stanttotalvolumefortheoptimizedstructureisastan-
dardproblemofoptimizationunderstabilityconstraints:
maximize
p
cr
(
a
i
)
,
subjectto
V
(
a
i
)=
V
0
.
(20)
Fig. 9 Local, extended local, and global post-buckling con-
straints
In(20),
a
i
standsforthedesignvariablesand
V
isthevol-
umeofthestructure.Thestandardproblemisnowmodi-
fied by implementing suitable post-buckling constraints
eitherinlocalorinextendedlocalform.Bothsymmetric
andasymmetricbifurcationaretakenintoaccount.
Plik z chomika:
kufel_007
Inne pliki z tego folderu:
The Design of Modern Steel Bridges - (Malestrom).PDF
(2384 KB)
Design of SHS Welded Joints Example.pdf
(600 KB)
Bridge Beam Details - 2nd Edition.pdf
(600 KB)
Worked Examples For The Design of Steel Structures.pdf
(5067 KB)
Water Menagement For Durable Bridges [Pearson].pdf
(9410 KB)
Inne foldery tego chomika:
Pliki dostępne do 01.06.2025
Pliki dostępne do 08.07.2024
Pliki dostępne do 19.01.2025
Pliki dostępne do 23.11.2025
Angielski
Zgłoś jeśli
naruszono regulamin