p33_068.pdf

(65 KB) Pobierz
Chapter 33 - 33.68
68. We use nT/ 2 to represent the integer number of half-periods specified in the problem. Note that
T =2 π/ω . We use the calculus-based definition of an average of a function:
sin 2 ( ωt
φ ) avg
=
1
nT/ 2
nT
2
sin 2 ( ωt
φ ) dt
0
=
2
nT
nT
2
1
cos(2 ωt
2 φ )
dt
2
t
2
0
2 φ )
2
nT
1
4 ω sin(2 ωt
nT
2
=
sin( nωT
2 φ ) + sin2 φ .
0
=
1
2
1
2 nTω
Since nωT = (2 π/ω )=2 ,wehavesin( nωT
2 φ ) = sin(2
2 φ )=
sin2 φ so [sin( nωT
2 φ )+
sin2 φ ]=0. Thus,
sin 2 ( ωt
φ ) avg = 1
2 .
643282473.001.png
Zgłoś jeśli naruszono regulamin