p33_068.pdf
(
65 KB
)
Pobierz
Chapter 33 - 33.68
68. We use
nT/
2 to represent the integer number of half-periods specified in the problem. Note that
T
=2
π/ω
. We use the calculus-based definition of an average of a function:
sin
2
(
ωt
−
φ
)
avg
=
1
nT/
2
nT
2
sin
2
(
ωt
−
φ
)
dt
0
=
2
nT
nT
2
1
−
cos(2
ωt
−
2
φ
)
dt
2
t
2
−
0
2
φ
)
2
nT
1
4
ω
sin(2
ωt
nT
2
=
−
sin(
nωT
2
φ
) + sin2
φ
.
0
=
1
2
−
1
2
nTω
−
Since
nωT
=
nω
(2
π/ω
)=2
nπ
,wehavesin(
nωT
−
2
φ
) = sin(2
nπ
−
2
φ
)=
−
sin2
φ
so [sin(
nωT
−
2
φ
)+
sin2
φ
]=0. Thus,
sin
2
(
ωt
φ
)
avg
=
1
−
2
.
Plik z chomika:
kf.mtsw
Inne pliki z tego folderu:
p33_002.pdf
(59 KB)
p33_011.pdf
(64 KB)
p33_005.pdf
(66 KB)
p33_018.pdf
(73 KB)
p33_017.pdf
(71 KB)
Inne foldery tego chomika:
chap01
chap02
chap03
chap04
chap05
Zgłoś jeśli
naruszono regulamin