Binary_Error_Correcting_Codes-ln.pdf

(158 KB) Pobierz
584788540 UNPDF
BinaryErrorCorrectingCodes
1BasicconceptsofErrorcorrectingCodes
Incommunicationsystem,werepresentaninformationasasequenceof0
an1(binaryform).Foraconvenience,letB={0,1}.Thenwedefine
B 2 ,B 3 ,...,B n asfollows:
B 2 ={00,01,10,11},
B 3 ={000,001,010,100,011,101,110,11},
. . .
B n ={b 1 b 2 ...b n |b i 2B}
Asymbolb 1 b 2 ...b n 2B n iscalledaword.Wealwaysdenote0and1for
00...0and11...1,respectively.
Wedefinebinaryoperations+,·:B×B!Basfollows:
+01
·01
001
000
110
101
Clearly,(B,+)isanabeliangroup.
Exercise1.1.Letb 1 b 2 ...b n ,c 1 c 2 ...c n 2B n andforeachi=1,2,...,n,let
d i =b i +c i asabovetable.Defineabinaryoperation+:B n ×B n !B n by
(b 1 b 2 ...b n ,c 1 c 2 ...c n )7!d 1 d 2 ...d n .
1
584788540.009.png
i)verifythat(B n ,+)isanabeliangroup,
ii)foreachb 1 b 2 ...b n 2B n ,determineitsinverse.
Thefollowingdiagramprovidesaroughideaofgeneralinformationtrans-
mittedsystem.
Noise
e
Messageword Codeword Recievedword Messageword
Encoding -
Transmission -
Decoding
w E(w) r D(r)
Fig.1:Thecommunicationchannel
Fromabovefigure,wegiveconceptsofabinary(n,m)codeasfollows:
Definition1.1.Letk,n2 N besuchthatm<n.Abinary(n,m)code(or
code)composeof:
1.aninjectivefunctionE:B m !B n ,calledanencodingfunction,
2.afunctionD:B n !B m suchthatD(E(w))=wforallw2B m ,
calledadecodingfunction.
WecallasetMB m asetofmassage,w2Mamessageword,C:=E(M)
acode,c2Cacodeword,r2Dom(D)areceivedword.
2
-
584788540.010.png 584788540.011.png 584788540.012.png
Ingeneral,M6=B m .WLOG,weassumeforaconveniencethatM=B m .
ThenacodeC:=E(M)=E(B m )and|C|=2 m .
Definition1.2.LetCB n beacodeandc2C.Ifawordrisreceived
(fromc)ande2B n issuchthatr=c+e,wecalleanerror(orerror
pattern).
Example1.1(Evenparity-checkcode).Wedefine
E:B m !B m+1 byb 1 b 2 ...b m 7!b 1 b 2 ...b m b m+1
where
8
> <
0ifthenumberof1s 0 inb 1 b 2 ...b m iseven
b m+1 =
> :
1ifthenumberof1s 0 inb 1 b 2 ...b m isodd
and
D:B m+1 !B m
by
8
> <
b 1 b 2 ...b m ifthenumberof1s 0 inb 1 b 2 ...b m iseven
b 1 b 2 ...b m b m+1 7!
> :
00...0 ifthenumberof1s 0 inb 1 b 2 ...b m isodd
Thenevenparity-checkcodeisan(m+1,m)code.
Forexample,B 3 isencodedasfollow:
messageword000001010100011101110111
codeword 00000011 0110
3
584788540.001.png 584788540.002.png
Thefollowingreceivedwordsaredecodedasinthetable:
receivedword111001010110000110101101
messageword000 101
Example1.2(Triple-repetitioncode).Triple-repetitioncodeis(3m,m)
codesuchthatanencodingfunction
E:B m !B 3m
isdefinedby
b 1 b 2 ...b m 7!b 1 b 2 ...b m b 1 b 2 ...b m b 1 b 2 ...b m
andadecodingfunction
D:B 3m !B m
isdefinedby
x 1 x 2 ...x m y 1 y 2 ...y m z 1 z 2 ...z m 7!b 1 b 2 ...b m
where
8
> <
0if0occursinx i y i z i atleasttwice
b i 7!
> :
1 if1occursinx i y i z i atleasttwice
4
584788540.003.png 584788540.004.png
Forexample,B 3 isencodedasfollow:
message 000 001 010 100 011 101 110 111
codeword000000000 010010010
Thefollowingreceivedwordsaredecodedasinthetable:
receivedword101101101010111110011101110001101001111000,101
messageword 101
Moreover,n−repetitioncodeisdefinedsimilarly.
NearestNeighborDecoding:ForacodeC,ifawordrisreceived,itis
decodedasthecodewordinCclosesttoit.
CompleteNearestNeighborDecoding:Ifmorethanonecandidateappears,
choosearbitrarily.
IncompleteNearestNeighborDecoding:Ifmorethanonecandidateappears,
requestaretransmission.
Tomeasureadistancebetweenanytwocodewords,weintroducethe
Hammingdistanceasfollow:
Definition1.3.Letu=u 1 u 2 ...u n ,v=v 1 v 2 ...v n 2B n .Thedistance
d(u,v)ofuandvisdefinedby
d(u,v)=|{i2{1,2,...,n}|u i 6=u i }|.
Theweightw(u)ofuisdefinedby
w(u)=|{i2{1,2,...,n}|u i 6=0}|
5
584788540.005.png 584788540.006.png 584788540.007.png 584788540.008.png
Zgłoś jeśli naruszono regulamin