Complex_Analysis-K_Houston.pdf
(
387 KB
)
Pobierz
134139110 UNPDF
ComplexAnalysis2002-2003
c
K.Houston2003
1ComplexFunctions
Inthissectionwewilldefinewhatwemeanbyacomplexfunc-
tion.Wewillthengeneralisethedefinitionsoftheexponential,
sineandcosinefunctionsusingcomplexpowerseries.Todeal
withcomplexpowerserieswedefinethenotionsofconver-
gentandabsolutelyconvergent,andseehowtousetheratio
testfromrealanalysistodetermineconvergenceandradius
ofconvergenceforthesecomplexseries.
Westartbydefiningdomainsinthecomplexplane.This
requirestheprelimarydefinition.
Definition1.1
The"
-neighbourhood
ofacomplexnumberzisthesetofcom-
plexnumbers{w2C:|z−w|<"}where"ispositivenumber.
Thusthe"-neigbourhoodofapointzisjustthesetofpoints
lyingwithinthecircleofradius"centredatz.Notethatit
doesn’tcontainthecircle.
Definition1.2
A
domain
isanon-emptysubsetDofCsuchthatforevery
pointinDthereexistsa"-neighbourhoodcontainedinD.
Examples1.3
Thefollowingaredomains.
(i)D=C.(Takec2C.Then,any">0willdoforan"-
neighbourhoodofc.)
(ii)D=C\{0}.(Takec2Dandlet"=
1
2
(|c|).Thisgivesa
"-neighbourhoodofcinD.)
(iii)D={z:|z−a|<R}forsomeR>0.(Takec2Candlet
"=
1
2
(R−|c−a|).Thisgivesa"-neighbourhoodofcinD.)
Example1.4
ThesetofrealnumbersRisnotadomain.Considerany
realnumber,thenany"-neighbourhoodmustcontainsome
complexnumbers,i.e.the"-neighbourhooddoesnotlieinthe
realnumbers.
Wecannowdefinethebasicobjectofstudy.
1
Definition1.5
LetDbeadomaininC.A
complexfunction
,denotedf:D!
C,isamapwhichassignstoeachzinDanelementofC,this
valueisdenotedf(z).
CommonError1.6
Notethatfisthefunctionandf(z)isthevalueofthefunction
atz.Itiswrongtosayf(z)isafunction,butsometimespeople
do.
Examples1.7
(i)Letf(z)=z
2
forallz2C.
(ii)Letf(z)=|z|forallz2C.Notethatherewehavea
complexfunctionforwhicheveryvalueisreal.
(iii)Letf(z)=3z
4
−(5−2i)z
2
+z−7forallz2C.Allcomplex
polynomialsgivecomplexfunctions.
(iv)Letf(z)=1/zforallz2C\{0}.Thisfunctioncannotbe
extendedtoallofC.
Remark1.8
Functionssuchassinxforxrealarenotcomplexfunctions
sincethereallineinCisnotadomain.Laterweseehowto
extendtheconceptofthesinesothatitiscomplexfunction
onthewholeofthecomplexplane.
Obviously,iffandgarecomplexfunctions,thenf+g,
f−g,andfgarefunctionsgivenby(f+g)(z)=f(z)+g(z),
(f−g)(z)=f(z)−g(z),and(fg)(z)=f(z)g(z),respectively.
Wecanalsodefine(f/g)(z)=f(z)/g(z)providedthatg(z)6=0
onD.Thuswecanbuilduplotsofnewfunctionsbythese
elementaryoperations.
Theaimofcomplexanalysis
Wewishtostudycomplexfunctions.Canwedefinedifferenti-
ation?Canweintegrate?WhichtheoremsfromRealAnalysis
canbeextendedtocomplexanalysis?Forexample,istherea
versionofthemeanvaluetheorem?Complexanalysisises-
sentiallytheattempttoanswerthesequestions.Thetheory
willbebuiltuponrealanalysisbutinmanywaysitiseasier
thanrealanalysis.Forexampleifacomplexfunctionisdif-
ferentiable(definedlater),thenitsderivativeisalsodifferen-
tiable.Thisisnottrueforrealfunctions.(Doyouknowanex-
ampleofadifferentiablerealfunctionwithnon-differentiable
derivative?)
2
Realandimaginarypartsoffunctions
Wewilloftenuseztodenoteacomplexnumberandwewill
havez=x+iywherexandyarebothreal.Thevaluef(z)
isacomplexnumberandsohasarealandimaginarypart.
Weoftenuseutodenotetherealpartandvtodenotethe
imaginarypart.Notethatuandvarefunctionsofz.
Weoftenwritef(x+iy)=u(x,y)+iv(x,y).Notethatuis
afunctionoftworealvariables,xandy.I.e.u:R
2
!R.
Similarlyforv.
Examples1.9
(i)Letf(z)=z
2
.Then,f(x+iy)=(x+iy)
2
=x
2
−y
2
+2ixy.So,
u(x,y)=x
2
−y
2
andv(x,y)=xy.
(ii)L
etf(z)
=|z|.Then,f(x+iy)=
p
x
2
+y
2
.So,u(x,y)=
Exercises1.10
Finduandvforthefollowing:
(i)f(z)=1/zforz2C\{0}.
(ii)f(z)=z
3
.
Visualisingcomplexfunctions
InRealAnalysiswecoulddrawthegraphofafunction.We
haveanaxisforthevariableandanaxisforthevalue,andso
wecandrawthegraphofthefunctiononapieceofpaper.
Forcomplexfunctionswehaveacomplexvariable(that’s
tworealvariables)andthevalue(anothertworealvariables),
soifwewanttodrawagraphwewillneed2+2=4real
variables,i.e.wewillhavetoworkin4-dimensionalspace.
Nowobviouslythisisabittrickybecauseweareusedto3
spacedimensionsandfindvisualising4dimensionalspace
veryhard.
Thus,itisverydifficulttovisualisecomplexfunctions.How-
ever,therearesomemethodsavailable:
(i)Wecandrawtwocomplexplanes,oneforthedomainand
onefortherange.
3
p
x
2
+y
2
andv(x,y)=0.
(ii)Thetwo-variablefunctionsuandvcanbevisualisedsep-
arately.Thegraphofafunctionoftwovariablesisasur-
faceinthreespace.
u(x,y)=cosx+sinyandv(x,y)=x
2
−y
2
(iii)Makeoneofthevariablestimeandviewthegraphas
somethingthatevolvesovertime.Thisisnotveryhelpful.
Defining
e
z
,
cosz
and
sinz
Firstwewilltryanddefinesomeelementarycomplexfunc-
tionstoplaywith.Howshallwedefinefunctionssuchase
z
,
coszandsinz?Werequirethattheirdefinitionshouldcoincide
withtherealversionwhenzisarealnumber,andwewould
likethemtohavepropertiessimilartotherealversionsofthe
functions,e.g.sin
2
z+cos
2
z=1wouldbenice.However,sine
andcosinearedefinedusingtrigonometryandsoarehardto
generalise:forexample,whatdoesitmeanforatriangleto
haveanhypotenuseoflength2+3i?Theexponentialisde-
finedusingdifferentialcalculusandwehavenotyetdefined
differentiationofcomplexfunctions.
However,weknowfromRealAnalysisthatthefunctions
canbedescribedusingapowerseries,e.g.,
sinx=x−
x
3
X
(−1)
n
x
2n+1
5!
−···=
(2n+1)!
.
n=0
Thus,forz2C,weshalldefinetheexponential,sineand
cosineofzasfollows:
X
z
n
n!
,
e
z
:=
n=0
X
(−1)
n
z
2n+1
sinz:=
(2n+1)!
,
n=0
X
(−1)
n
z
2n
cosz:=
(2n)!
.
n=0
4
1
3!
+
x
5
1
1
1
Thus,
X
n!
=1+(3+2i)+
(3+2i)
2
2!
+
(3+2i)
3
e
3+2i
=
3!
+...
n=0
Thesedefinitionsobviouslysatisfytherequirementthatthey
coincidewiththedefinitionsweknowandloveforrealz,but
howcanwebesurethattheseriesconverges?I.e.whenwe
putinaz,suchas3+2i,intothedefinition,doesacomplex
numbercomesout?
Toanswerthiswewillhavetostudycomplexseriesand
asthetheoryofrealserieswasbuiltonthetheoryofreal
sequenceswehadbetterstartwithcomplexsequences.
ComplexSequences
Thedefinitionofconvergenceofacomplexsequenceisthe
sameasthatforconvergenceofarealsequence.
Definition1.11
Acomplexsequencehc
n
i
converges
toc2C,ifgivenany">0,
thenthereexistsNsuchthat|c
n
−c|<"forallnN.
Wewritec
n
!corlim
n!1
c
n
=c.
Example1.12
Thesequencec
n
=
4−3i
7
n
convergestozero.
Consider
r
25
49
!
n
4−3i
7
n
=
4−3i
7
n
5
7
n
|c
n
−0|=|c
n
|=
=
=
.
So
|c
n
−0|<"()(5/7)
n
<"
()nlog(5/7)<log"
()n>
log"
log(5/7)
.
So,givenany"wecanchooseNtobeanynaturalnumber
greaterthanlog"/log(5/7).Thusthesequenceconvergesto
zero.
Remark1.13
Noticethata
n
=|c
n
−c|isarealsequence,andthatc
n
!cif
andonlyiftherealsequence|c
n
−c|!0.Hence,wearesaying
somethingaboutacomplexsequenceusingrealanalysis.
5
1
(3+2i)
n
Plik z chomika:
Kuya
Inne pliki z tego folderu:
An_Introduction_to_Complex_Analysis_for_Engineers-Adler.pdf
(948 KB)
Complex_Analysis-Cain.pdf
(1544 KB)
Complex_Analysis-Deitmar.pdf
(198 KB)
Complex_Analysis-Douglas_Arnold.pdf
(294 KB)
Complex_Analysis-K_Houston.pdf
(387 KB)
Inne foldery tego chomika:
algebra
analysis
calculus
computation
discrete
Zgłoś jeśli
naruszono regulamin