Complex_Analysis-K_Houston.pdf

(387 KB) Pobierz
134139110 UNPDF
ComplexAnalysis2002-2003
c K.Houston2003
1ComplexFunctions
Inthissectionwewilldefinewhatwemeanbyacomplexfunc-
tion.Wewillthengeneralisethedefinitionsoftheexponential,
sineandcosinefunctionsusingcomplexpowerseries.Todeal
withcomplexpowerserieswedefinethenotionsofconver-
gentandabsolutelyconvergent,andseehowtousetheratio
testfromrealanalysistodetermineconvergenceandradius
ofconvergenceforthesecomplexseries.
Westartbydefiningdomainsinthecomplexplane.This
requirestheprelimarydefinition.
Definition1.1
The" -neighbourhood ofacomplexnumberzisthesetofcom-
plexnumbers{w2C:|z−w|<"}where"ispositivenumber.
Thusthe"-neigbourhoodofapointzisjustthesetofpoints
lyingwithinthecircleofradius"centredatz.Notethatit
doesn’tcontainthecircle.
Definition1.2
A domain isanon-emptysubsetDofCsuchthatforevery
pointinDthereexistsa"-neighbourhoodcontainedinD.
Examples1.3
Thefollowingaredomains.
(i)D=C.(Takec2C.Then,any">0willdoforan"-
neighbourhoodofc.)
(ii)D=C\{0}.(Takec2Dandlet"= 1 2 (|c|).Thisgivesa
"-neighbourhoodofcinD.)
(iii)D={z:|z−a|<R}forsomeR>0.(Takec2Candlet
"= 1 2 (R−|c−a|).Thisgivesa"-neighbourhoodofcinD.)
Example1.4
ThesetofrealnumbersRisnotadomain.Considerany
realnumber,thenany"-neighbourhoodmustcontainsome
complexnumbers,i.e.the"-neighbourhooddoesnotlieinthe
realnumbers.
Wecannowdefinethebasicobjectofstudy.
1
Definition1.5
LetDbeadomaininC.A complexfunction ,denotedf:D!
C,isamapwhichassignstoeachzinDanelementofC,this
valueisdenotedf(z).
CommonError1.6
Notethatfisthefunctionandf(z)isthevalueofthefunction
atz.Itiswrongtosayf(z)isafunction,butsometimespeople
do.
Examples1.7
(i)Letf(z)=z 2 forallz2C.
(ii)Letf(z)=|z|forallz2C.Notethatherewehavea
complexfunctionforwhicheveryvalueisreal.
(iii)Letf(z)=3z 4 −(5−2i)z 2 +z−7forallz2C.Allcomplex
polynomialsgivecomplexfunctions.
(iv)Letf(z)=1/zforallz2C\{0}.Thisfunctioncannotbe
extendedtoallofC.
Remark1.8
Functionssuchassinxforxrealarenotcomplexfunctions
sincethereallineinCisnotadomain.Laterweseehowto
extendtheconceptofthesinesothatitiscomplexfunction
onthewholeofthecomplexplane.
Obviously,iffandgarecomplexfunctions,thenf+g,
f−g,andfgarefunctionsgivenby(f+g)(z)=f(z)+g(z),
(f−g)(z)=f(z)−g(z),and(fg)(z)=f(z)g(z),respectively.
Wecanalsodefine(f/g)(z)=f(z)/g(z)providedthatg(z)6=0
onD.Thuswecanbuilduplotsofnewfunctionsbythese
elementaryoperations.
Theaimofcomplexanalysis
Wewishtostudycomplexfunctions.Canwedefinedifferenti-
ation?Canweintegrate?WhichtheoremsfromRealAnalysis
canbeextendedtocomplexanalysis?Forexample,istherea
versionofthemeanvaluetheorem?Complexanalysisises-
sentiallytheattempttoanswerthesequestions.Thetheory
willbebuiltuponrealanalysisbutinmanywaysitiseasier
thanrealanalysis.Forexampleifacomplexfunctionisdif-
ferentiable(definedlater),thenitsderivativeisalsodifferen-
tiable.Thisisnottrueforrealfunctions.(Doyouknowanex-
ampleofadifferentiablerealfunctionwithnon-differentiable
derivative?)
2
Realandimaginarypartsoffunctions
Wewilloftenuseztodenoteacomplexnumberandwewill
havez=x+iywherexandyarebothreal.Thevaluef(z)
isacomplexnumberandsohasarealandimaginarypart.
Weoftenuseutodenotetherealpartandvtodenotethe
imaginarypart.Notethatuandvarefunctionsofz.
Weoftenwritef(x+iy)=u(x,y)+iv(x,y).Notethatuis
afunctionoftworealvariables,xandy.I.e.u:R
2 !R.
Similarlyforv.
Examples1.9
(i)Letf(z)=z 2 .Then,f(x+iy)=(x+iy) 2 =x 2 −y 2 +2ixy.So,
u(x,y)=x 2 −y 2 andv(x,y)=xy.
(ii)L etf(z) =|z|.Then,f(x+iy)= p x 2 +y 2 .So,u(x,y)=
Exercises1.10
Finduandvforthefollowing:
(i)f(z)=1/zforz2C\{0}.
(ii)f(z)=z 3 .
Visualisingcomplexfunctions
InRealAnalysiswecoulddrawthegraphofafunction.We
haveanaxisforthevariableandanaxisforthevalue,andso
wecandrawthegraphofthefunctiononapieceofpaper.
Forcomplexfunctionswehaveacomplexvariable(that’s
tworealvariables)andthevalue(anothertworealvariables),
soifwewanttodrawagraphwewillneed2+2=4real
variables,i.e.wewillhavetoworkin4-dimensionalspace.
Nowobviouslythisisabittrickybecauseweareusedto3
spacedimensionsandfindvisualising4dimensionalspace
veryhard.
Thus,itisverydifficulttovisualisecomplexfunctions.How-
ever,therearesomemethodsavailable:
(i)Wecandrawtwocomplexplanes,oneforthedomainand
onefortherange.
3
p x 2 +y 2 andv(x,y)=0.
 
(ii)Thetwo-variablefunctionsuandvcanbevisualisedsep-
arately.Thegraphofafunctionoftwovariablesisasur-
faceinthreespace.
u(x,y)=cosx+sinyandv(x,y)=x 2 −y 2
(iii)Makeoneofthevariablestimeandviewthegraphas
somethingthatevolvesovertime.Thisisnotveryhelpful.
Defining e z , cosz and sinz
Firstwewilltryanddefinesomeelementarycomplexfunc-
tionstoplaywith.Howshallwedefinefunctionssuchase z ,
coszandsinz?Werequirethattheirdefinitionshouldcoincide
withtherealversionwhenzisarealnumber,andwewould
likethemtohavepropertiessimilartotherealversionsofthe
functions,e.g.sin 2 z+cos 2 z=1wouldbenice.However,sine
andcosinearedefinedusingtrigonometryandsoarehardto
generalise:forexample,whatdoesitmeanforatriangleto
haveanhypotenuseoflength2+3i?Theexponentialisde-
finedusingdifferentialcalculusandwehavenotyetdefined
differentiationofcomplexfunctions.
However,weknowfromRealAnalysisthatthefunctions
canbedescribedusingapowerseries,e.g.,
sinx=x− x 3
X
(−1) n x 2n+1
5! −···=
(2n+1)! .
n=0
Thus,forz2C,weshalldefinetheexponential,sineand
cosineofzasfollows:
X
z n
n! ,
e z :=
n=0
X
(−1) n z 2n+1
sinz:=
(2n+1)! ,
n=0
X
(−1) n z 2n
cosz:=
(2n)! .
n=0
4
1
3! + x 5
1
1
1
134139110.001.png 134139110.002.png
Thus,
X
n! =1+(3+2i)+ (3+2i) 2
2! + (3+2i) 3
e 3+2i =
3! +...
n=0
Thesedefinitionsobviouslysatisfytherequirementthatthey
coincidewiththedefinitionsweknowandloveforrealz,but
howcanwebesurethattheseriesconverges?I.e.whenwe
putinaz,suchas3+2i,intothedefinition,doesacomplex
numbercomesout?
Toanswerthiswewillhavetostudycomplexseriesand
asthetheoryofrealserieswasbuiltonthetheoryofreal
sequenceswehadbetterstartwithcomplexsequences.
ComplexSequences
Thedefinitionofconvergenceofacomplexsequenceisthe
sameasthatforconvergenceofarealsequence.
Definition1.11
Acomplexsequencehc n i converges toc2C,ifgivenany">0,
thenthereexistsNsuchthat|c n −c|<"forallnN.
Wewritec n !corlim n!1 c n =c.
Example1.12
Thesequencec n =
4−3i
7
n
convergestozero.
Consider
r 25
49
! n
4−3i
7
n =
4−3i
7
n
5
7
n
|c n −0|=|c n |=
=
=
.
So
|c n −0|<"()(5/7) n <"
()nlog(5/7)<log"
()n> log"
log(5/7) .
So,givenany"wecanchooseNtobeanynaturalnumber
greaterthanlog"/log(5/7).Thusthesequenceconvergesto
zero.
Remark1.13
Noticethata n =|c n −c|isarealsequence,andthatc n !cif
andonlyiftherealsequence|c n −c|!0.Hence,wearesaying
somethingaboutacomplexsequenceusingrealanalysis.
5
1
(3+2i) n
134139110.003.png
 
Zgłoś jeśli naruszono regulamin