Complex_Analysis-Deitmar.pdf
(
198 KB
)
Pobierz
389359903 UNPDF
COMPLEX ANALYSIS
ANTON DEITMAR
CONTENTS
1 THE COMPLEX NUMBERS
3
2 HOLOMORPHY
7
3 POWER SERIES
9
4 PATH INTEGRALS
14
5 CAUCHY'S THEOREM
17
6 HOMOTOPY
19
7 CAUCHY'S INTEGRAL FORMULA
25
8 SINGULARITIES
31
9 THE RESIDUE THEOREM
34
10 CONSTRUCTION OF FUNCTIONS
38
11 GAMMA & ZETA
45
1
COMPLEX ANALYSIS
2
12 THE UPPER HALF PLANE
47
13 CONFORMAL MAPPINGS
50
14 SIMPLE CONNECTEDNESS
53
COMPLEX ANALYSIS
3
1 THE COMPLEX NUMBERS
PROPOSITION 1.1 THE COMPLEX CONJUGATION HAS THE
FOLLOWING PROPERTIES:
(A) Z + W = Z + W,
(B) ZW = Z W,
(C) Z
1
= Z
1
, OR
Z
W
=
W
,
(D) Z = Z,
(E) Z + Z = 2RE(Z), AND ZZ = 2IIM(Z).
Z
COMPLEX ANALYSIS
4
PROPOSITION 1.2 THE ABSOLUTE VALUE SATISES:
(A) JZJ= 0,Z = 0,
(B) JZWJ=JZJJWJ,
(C) JZJ=JZJ,
(D) JZ
1
J=JZJ
1
,
(E) JZ + WJJZJ+JWJ, (TRIANGLE INEQUALITY).
PROPOSITION 1.3 A SUBSET AC IS CLOSED I FOR EVERY
SEQUENCE (A
N
) IN A THAT CONVERGES IN C THE LIMIT
A = LIM
N!1
A
N
ALSO BELONGS TO A.
WE SAY THAT A CONTAINS ALL ITS LIMIT POINTS.
COMPLEX ANALYSIS
5
PROPOSITION 1.4 LETODENOTE THE SYSTEM OF ALL OPEN SETS
IN C. THEN
(A);2O, C2O,
(B) A; B2O)A\B2O,
(C) A
I
2OFOR EVERY I2I IMPLIES
S
I2I
A
I
2O.
PROPOSITION 1.5 FOR A SUBSET KC THE FOLLOWING ARE
EQUIVALENT:
(A) K IS COMPACT.
(B) EVERY SEQUENCE (Z
N
) IN K HAS A CONVERGENT SUBSEQUENCE
WITH LIMIT IN K.
Plik z chomika:
Kuya
Inne pliki z tego folderu:
An_Introduction_to_Complex_Analysis_for_Engineers-Adler.pdf
(948 KB)
Complex_Analysis-Cain.pdf
(1544 KB)
Complex_Analysis-Deitmar.pdf
(198 KB)
Complex_Analysis-Douglas_Arnold.pdf
(294 KB)
Complex_Analysis-K_Houston.pdf
(387 KB)
Inne foldery tego chomika:
algebra
analysis
calculus
computation
discrete
Zgłoś jeśli
naruszono regulamin