complex analysis.pdf
(
294 KB
)
Pobierz
390090274 UNPDF
COMPLEXANALYSIS
1
DouglasN.Arnold
2
References:
JohnB.Conway,FunctionsofOneComplexVariable,Springer-Verlag,1978.
LarsV.Ahlfors,ComplexAnalysis,McGraw-Hill,1966.
RaghavanNarasimhan,ComplexAnalysisinOneVariable,Birkh¨auser,1985.
CONTENTS
I.TheComplexNumberSystem.............................................2
II.ElementaryPropertiesandExamplesofAnalyticFns................3
Dierentiabilityandanalyticity...........................................4
TheLogarithm............................................................6
Conformality..............................................................6
Cauchy–RiemannEquations...............................................7
M¨obiustransformations...................................................9
III.ComplexIntegrationandApplicationstoAnalyticFns.............11
Localresultsandconsequences...........................................12
HomotopyofpathsandCauchy’sTheorem...............................14
WindingnumbersandCauchy’sIntegralFormula.........................15
Zerocounting;OpenMappingTheorem..................................17
Morera’sTheoremandGoursat’sTheorem...............................18
IV.SingularitiesofAnalyticFunctions....................................19
Laurentseries............................................................20
Residueintegrals.........................................................23
V.Furtherresultsonanalyticfunctions.................................26
ThetheoremsofWeierstrass,Hurwitz,andMontel.......................26
Schwarz’sLemma........................................................28
TheRiemannMappingTheorem.........................................29
ComplementsonConformalMapping....................................31
VI.HarmonicFunctions......................................................32
ThePoissonkernel.......................................................33
SubharmonicfunctionsandthesolutionoftheDirichletProblem.........36
TheSchwarzReflectionPrinciple.........................................39
1
Theselecturenoteswerepreparedfortheinstructor’spersonaluseinteachingahalf-semestercourse
oncomplexanalysisatthebeginninggraduatelevelatPennState,inSpring1997.Theyarecertainlynot
meanttoreplaceagoodtextonthesubject,suchasthoselistedonthispage.
2
DepartmentofMathematics,PennStateUniversity,UniversityPark,PA16802.
Web:http://www.math.psu.edu/dna/.
1
2
I.TheComplexNumberSystem
Risafield.Forn>1,R
n
isavectorspaceoverR,soisanadditivegroup,butdoesn’t
haveamultiplicationonit.WecanendowR
2
withamultiplicationby
(a,b)(c,d)=(ac−bd,bc+ad).
UnderthisdefinitionR
2
becomesafield,denotedC.Notethat(a/(a
2
+b
2
),−b/(a
2
+b
2
))
isthemultiplicativeinverseof(a,b).(Remark:itisnotpossibletoendowR
n
withafield
structureforn>2.)Wedenote(0,1)byiandidentifyx2Rwith(x,0),soRC.Thus
(a,b)=a+bi,a,b2R.Notethati
2
=−1.CisgeneratedbyadjoiningitoRandclosing
underadditionandmultiplication.Itisremarkablethattheadditionofiletsusnotonly
solvetheequationx
2
+1=0,buteverypolynomialequation.
Foraandbrealandz=a+biwedefineRez=a,Imz=b,¯z=a−bi,and
|z|=(a
2
+b
2
)
1/2
.Then
Rez=(z+¯z)/2, Imz=(z−¯z)/(2i),
|z|
2
=z¯z,
1
z/w=¯z/¯w, |z+w||z|+|w|.
Themap7!(cos,sin)definesa2-periodicmapofthereallineontotheunit
circleinR
2
.Incomplexnotationthismapis7!cis:=cos+isin.Everynonzero
complexnumbercanbewrittenasrciswherer>0isuniquelydeterminedand2R
isuniquelydeterminedmodulo2.Thenumber0isequaltorciswherer=0and
isarbitrary.Therelationz=rcisdeterminestherelationsz7!rwhichissimplythe
functionr=|z|andz7!.Thelatterisdenoted=arg.Notethatforz6=0,argis
determinedmodulo2(whilearg0isarbitrary).Wecannormalizeargbyinsistingthat
argz2(−,].Notethatifz
1
=rcis
1
andz
2
=rcis
2
thenz
1
z
2
=r
1
r
2
cis(
1
+
2
).
Thelatterformulajustencapsulatestheformulaforthesineandcosineofasum,andgives
argz
1
z
2
=argz
1
+argz
2
.Inparticular,ircis=rcis(+/2),somultiplicationbyiis
justtheoperationofrotationby/2inthecomplexplane.Multiplicationbyanarbitrary
complexnumberrcisisjustrotationbyargfollowedby(orprecededby)dilationbya
factorr.Further,z
n
=r
n
cis(n).Everynonzeroz2Cadmitsndistinctnthroots:the
z
=
¯z
|z|
2
,
z±w=¯z±¯w, zw=¯z¯w,
nthrootsofrcisare
n
p
rcis[(+2k)/n],k=0,1,...,n.
Linesandcirclesintheplane.Circlesgivenby|z−a|=rwherea2Cisthecenter
andr>0istheradius.If06=b2Cthenthelinethroughtheorigininthedirection
bisthesetofallpointsoftheformtb,t2R,orallzwithIm(z/b)=0.Ift2R
andc>0then(t+ci)b=tb+cibrepresentsapointinthehalfplanetotheleftof
bdeterminedbythelinetb,i.e.,{z:Im(z/b)>0}istheequationofthathalf-plane.
Similarly,{z:Im[(z−a)/b]>0}isthetranslationofthathalf-planebya,i.e.,thehalf-
planedeterminedbythelinethroughaparalleltobandinthedirectiontotheleftof
b.
3
Stereographicprojectiondeterminesaone-to-onecorrespondencebetweentheunit
sphereinR
3
minusthenorth-pole,S,andthecomplexplaneviathecorrespondence
z$
x
1
+ix
2
1−x
3
,
1+|z|
2
, x
2
=
2Imz
1+|z|
2
, x
3
=
|z|
2
−1
|z|+1
.
IfwedefineC
1
=C[{1},thenwehaveaone-to-onecorrespondencebetweenSand
C
1
.ThisallowsustodefineametriconC
1
,whichisgivenby
d(z
1
,z
2
)=
2|z
1
−z
2
|
p
1+|z|
2
.
II.ElementaryPropertiesandExamplesofAnalyticFunctions
Forz6=1,
P
N
n=0
z
n
=(1−z
N+1
)/(1−z).Thereforethegeometricseries
P
1
n=0
z
n
converges(to1/(1−z))if|z|<1.Itclearlydiverges,infactitstermsbecomeunbounded,
if|z|>1.
WeierstrassM-Test.LetM
0
,M
1
,...bepositivenumberswith
P
M
n
<1andsuppose
thatf
n
:X!CarefunctionsonsomesetXsatisfyingsup
x2X
|f
n
(x)|M
n
.Then
R
=limsup|a
n
|
1/n
.
Then(1)foranya2Cthepowerseries
P
1
n=0
a
n
(z−a)
n
convergesabsolutelyforall
|z−a|<Randitconvergesabsolutelyanduniformlyonthedisk|z−a|rforallr<R.
(2)Thesequencea
n
(z−a)
n
isunboundedforall|z−a|>R(andhencetheseriesis
certainlydivergent).
Thusweseethatthesetofpointswhereapowerseriesconvergesconsistsofadisk
|z−a|<Randpossiblyasubsetofitsboundary.Riscalledtheradiusofconvergenceof
itsseries.ThecaseR=1isallowed.
Proofoftheorem.Foranyr<RweshowabsoluteuniformconvergenceonD
r
={|z−a|
r}.Choose˜r2(r,R).Then,1/˜r>limsup|a
n
|
1/n
,so|a
n
|
1/n
<1/˜rforallnsuciently
large.Forsuchn,|a
n
|<1/˜r
n
andso
sup
z2D
r
|a
n
(z−a)
n
|<(r/˜r)
n
.
Since
P
(r/˜r)
n
<1wegettheabsoluteuniformconvergenceonD
r
.
If|z−a|=r>R,take˜r2(R,r).Thenthereexistnarbitrarilylargesuchthat
|a
n
|
1/n
1/˜r.Then,|a
n
(z−a)
n
|(r/˜r)
n
,whichcanbearbitrarilylarge.
x
1
=
2Rez
p
(1+|z
1
|
2
)(1+|z
2
|
2
)
, d(z,1)=
2
P
1
n=0
f
n
(x)isabsolutelyanduniformlyconvergent.
Theorem.Leta
0
,a
1
,···2CbegivenanddefinethenumberRby
1
4
thislimitistheradiusofconvergenceRof
P
a
n
(z−a)
n
.
Thustheseries
P
a
n
z
n
hastermsofincreasingmagnitude,andsocannotbeconvergent.
Thus|z|R.Thisshowsthatlim|a
n
/a
n+1
|R.
Similarly,supposethatz<lim|a
n
/a
n+1
|.Thenforallnsucientlylarge|a
n
|>|a
n+1
z|
and|a
n
z
n
|>|a
n+1
z
n+1
|.Thustheserieshastermsofdecreasingmagnitude,andso,by
theprevioustheorem,|z|R.Thisshowsthatlim|a
n
/a
n+1
|R.
Remark.Onthecircleofconvergence,manydierentbehaviorsarepossible.
P
z
n
diverges
forall|z|=1.
P
z
n
/ndivergesforz=1,elseconverges,butnotabsolutely(thisfollows
fromthefactthatthepartialsumsof
P
z
n
areboundedforz6=1and1/n#0).
P
z
n
/n
2
convergesabsolutelyon|z|1.Sierpinskigavea(complicated)exampleofafunction
whichdivergesateverypointoftheunitcircleexceptz=1.
Asanapplication,weseethattheseries
1
X
z
n
n!
n=0
convergesabsolutelyforallz2Candthattheconvergenceisuniformonallboundedsets.
Thesumis,bydefinition,expz.
Nowsupposethat
P
1
n=0
a
n
(z−a)
n
hasradiusofconvergenceR,andconsideritsformal
hasthesameradiusofconvergenceas
P
1
n=0
a
n
(z−a)
n
since
(z−a)
N
X
a
n+1
(z−a)
n
=
N+1
X
a
n
(z−a)−a
0
,
n=0
n=0
andsothepartialsumsontheleftandrighteitherbothdivergeforagivenzorboth
converge.Thisshows(inaroundaboutway)thatlimsup|a
n+1
|
1/n
=limsup|a
n
|
1/n
=
1/R.Nowlim(n+1)
1/n
=1asiseasilyseenbytakinglogs.Moreover,itiseasytoseethatif
limsupb
n
=bandlimc
n
=c>0,thenlimsupb
n
c
n
=bc.Thuslimsup|(n+1)a
n+1
|
1/n
=
1/R.Thisshowsthattheformalderivativeofapowerserieshasthesameradiusof
convergenceastheoriginalpowerseries.
Dierentiabilityandanalyticity.Definitionofdierentiabilityatapoint(assumes
functionisdefinedinaneighborhoodofthepoint).
Mostoftheconsequencesofdierentiabilityarequitedierentintherealandcomplex
case,butthesimplestalgebraicrulesarethesame,withthesameproofs.Firstofall,
dierentiabilityatapointimpliescontinuitythere.Iffandgarebothdierentiableata
pointa,thensoaref±g,f·g,and,ifg(a)6=0,f/g,andtheusualsum,product,and
quotientruleshold.Iffisdierentiableataandgisdierentiableatf(a),thengf
isdierentiableataandthechainruleholds.Supposethatfiscontinuousata,gis
continousatf(a),andg(f(z))=zforallzinaneighborhoodofa.Thenifg
0
(f(a))exists
andisnon-zero,thenf
0
(a)existsandequals1/g
0
(f(a)).
Theorem.Ifa
0
,a
1
,...2Candlim|a
n
/a
n+1
|existsasafinitenumberorinfinity,then
Proof.Withoutlossofgeneralitywecansupposethata=0.Supposethat|z|>
lim|a
n
/a
n+1
|.Thenforallnsucientlylarge|a
n
|<|a
n+1
z|and|a
n
z
n
|<|a
n+1
z
n+1
|.
derivative
P
1
n=1
na
n
(z−a)
n−1
=
P
1
n=0
(n+1)a
n+1
(z−a)
n
.Nowclearly
P
n=0
a
n+1
(z−a)
n
5
Definition.Letfbeacomplex-valuedfunctiondefinedonanopensetGinC.Thenf
issaidtobeanalyticonGiff
0
existsandiscontinuousateverypointofG.
Remark.WeshallprovelaterthatiffisdierentiableateverypointofanopensetinC
itisautomaticallyanalytic;infact,itisautomaticallyinfinitelydierentiable.Thisisof
coursevastlydierentfromtherealcase.
IfQisanarbitrarynon-emptysubsetofCwesayfisanalyticonQifitisdefinedand
analyticonanopensetcontainingQ.
Wenowshowthatapowerseriesisdierentiableateverypointinitsdiskofconvergence
andthatitsderivativeisgivenbytheformalderivativeobtainedbydierentiatingterm-
by-term.Sinceweknowthatthatpowerserieshasthesameradiusofconvergence,it
followsthatapowerseriesisanalyticandinfinitelydierentiableinitsconvergencedisk.
Forsimplicity,andwithoutlossofgeneralityweconsiderapowerseriescenteredatzero:
issatisfiedforallzsucientlyclosetoz
0
,whereg(z)=
P
1
n=1
na
n
z
n−1
.Lets
N
(z)=
z−z
0
−g(z
0
)
P
N
n=0
a
n
z
n
,R
N
(z)=
P
1
n=N+1
a
n
z
n
.Then
z−z
0
−g(z
0
)
z−z
0
−s
0
N
(z
0
)
=:T
1
+T
2
+T
3
.
+|s
0
N
(z
0
)−g(z
0
)|+
R
N
(z)−R
N
(z
0
)
z−z
0
Nows
0
N
(z
0
)isjustapartialsumforg(z
0
),soforNsucientlylarge(andallz),T
2
/3.
Also,
R
N
(z)−R
n
(z
0
)
X
a
n
z
n
−z
n
0
z−z
0
=
z−z
0
.
n=N+1
0
|a
n
nr
n−1
.
Since
P
a
n
nr
n−1
isconvergent,wehaveforNsucientlylargeandall|z|<rthen
T
3
</3.NowfixavalueofNwhichissucientlylargebybothcriteria.Thenthe
dierentiabilityofthepolynomials
N
showsthatT
1
/3forallzsucientlyclosetoz
0
.
Wethusknowthatiff(z)=
P
a
n
z
n
,then,withinthediskofconvergence,f
0
(z)=
z−z
0
=|a
n
||z
n−1
+z
n−2
z
0
+···+z
n−1
P
na
n
z
n−1
,andbyinduction,f
00
(z)=
P
n(n−1)a
n
z
n−2
,etc.Thusa
0
=f(0),a
1
=f
0
(0),
a
2
=f
00
(0)/2,a
3
=f
000
(0)/3!,etc.Thisshowsthatanyconvergentpowerseriesisthesum
ofitsTaylorseriesinthediskofconvergence:
f(z)=
X
f
n
(a)
n!
(z−a)
n
.
Inparticular,exp
0
=exp.
f(z)=
P
n
a
n
z
n
.SupposethattheradiusofconvergenceisRandthat|z
0
|<R.Wemust
showthatforany>0,theinequality
f(z)−f(z
0
)
s
N
(z)−s
N
(z
0
)
f(z)−f(z
0
)
1
Now|z
0
|<r<Rforsomer,andifwerestrictto|z|<r,wehave
a
n
z
n
−z
n
0
Plik z chomika:
frodomustdie
Inne pliki z tego folderu:
Complex Analysis(1).pdf
(948 KB)
(ebook-pdf) - Mathematics - Arnold - Complex Analysis.pdf
(308 KB)
Complex_Analysis.pdf
(1491 KB)
complex analysis.pdf
(294 KB)
complex-analysis.pdf
(198 KB)
Inne foldery tego chomika:
Algebra
Calculus
Geometry
Misc
number theory
Zgłoś jeśli
naruszono regulamin