complex analysis.pdf

(294 KB) Pobierz
390090274 UNPDF
COMPLEXANALYSIS 1
DouglasN.Arnold 2
References:
JohnB.Conway,FunctionsofOneComplexVariable,Springer-Verlag,1978.
LarsV.Ahlfors,ComplexAnalysis,McGraw-Hill,1966.
RaghavanNarasimhan,ComplexAnalysisinOneVariable,Birkh¨auser,1985.
CONTENTS
I.TheComplexNumberSystem.............................................2
II.ElementaryPropertiesandExamplesofAnalyticFns................3
Dierentiabilityandanalyticity...........................................4
TheLogarithm............................................................6
Conformality..............................................................6
Cauchy–RiemannEquations...............................................7
M¨obiustransformations...................................................9
III.ComplexIntegrationandApplicationstoAnalyticFns.............11
Localresultsandconsequences...........................................12
HomotopyofpathsandCauchy’sTheorem...............................14
WindingnumbersandCauchy’sIntegralFormula.........................15
Zerocounting;OpenMappingTheorem..................................17
Morera’sTheoremandGoursat’sTheorem...............................18
IV.SingularitiesofAnalyticFunctions....................................19
Laurentseries............................................................20
Residueintegrals.........................................................23
V.Furtherresultsonanalyticfunctions.................................26
ThetheoremsofWeierstrass,Hurwitz,andMontel.......................26
Schwarz’sLemma........................................................28
TheRiemannMappingTheorem.........................................29
ComplementsonConformalMapping....................................31
VI.HarmonicFunctions......................................................32
ThePoissonkernel.......................................................33
SubharmonicfunctionsandthesolutionoftheDirichletProblem.........36
TheSchwarzReflectionPrinciple.........................................39
1 Theselecturenoteswerepreparedfortheinstructor’spersonaluseinteachingahalf-semestercourse
oncomplexanalysisatthebeginninggraduatelevelatPennState,inSpring1997.Theyarecertainlynot
meanttoreplaceagoodtextonthesubject,suchasthoselistedonthispage.
2 DepartmentofMathematics,PennStateUniversity,UniversityPark,PA16802.
Web:http://www.math.psu.edu/dna/.
1
2
I.TheComplexNumberSystem
Risafield.Forn>1,R n isavectorspaceoverR,soisanadditivegroup,butdoesn’t
haveamultiplicationonit.WecanendowR 2 withamultiplicationby
(a,b)(c,d)=(ac−bd,bc+ad).
UnderthisdefinitionR 2 becomesafield,denotedC.Notethat(a/(a 2 +b 2 ),−b/(a 2 +b 2 ))
isthemultiplicativeinverseof(a,b).(Remark:itisnotpossibletoendowR n withafield
structureforn>2.)Wedenote(0,1)byiandidentifyx2Rwith(x,0),soRC.Thus
(a,b)=a+bi,a,b2R.Notethati 2 =−1.CisgeneratedbyadjoiningitoRandclosing
underadditionandmultiplication.Itisremarkablethattheadditionofiletsusnotonly
solvetheequationx 2 +1=0,buteverypolynomialequation.
Foraandbrealandz=a+biwedefineRez=a,Imz=b,¯z=a−bi,and
|z|=(a 2 +b 2 ) 1/2 .Then
Rez=(z+¯z)/2, Imz=(z−¯z)/(2i),
|z| 2 =z¯z, 1
z/w=¯z/¯w, |z+w||z|+|w|.
Themap7!(cos,sin)definesa2-periodicmapofthereallineontotheunit
circleinR 2 .Incomplexnotationthismapis7!cis:=cos+isin.Everynonzero
complexnumbercanbewrittenasrciswherer>0isuniquelydeterminedand2R
isuniquelydeterminedmodulo2.Thenumber0isequaltorciswherer=0and
isarbitrary.Therelationz=rcisdeterminestherelationsz7!rwhichissimplythe
functionr=|z|andz7!.Thelatterisdenoted=arg.Notethatforz6=0,argis
determinedmodulo2(whilearg0isarbitrary).Wecannormalizeargbyinsistingthat
argz2(−,].Notethatifz 1 =rcis 1 andz 2 =rcis 2 thenz 1 z 2 =r 1 r 2 cis( 1 + 2 ).
Thelatterformulajustencapsulatestheformulaforthesineandcosineofasum,andgives
argz 1 z 2 =argz 1 +argz 2 .Inparticular,ircis=rcis(+/2),somultiplicationbyiis
justtheoperationofrotationby/2inthecomplexplane.Multiplicationbyanarbitrary
complexnumberrcisisjustrotationbyargfollowedby(orprecededby)dilationbya
factorr.Further,z n =r n cis(n).Everynonzeroz2Cadmitsndistinctnthroots:the
z = ¯z
|z| 2 ,
z±w=¯z±¯w, zw=¯z¯w,
nthrootsofrcisare n p rcis[(+2k)/n],k=0,1,...,n.
Linesandcirclesintheplane.Circlesgivenby|z−a|=rwherea2Cisthecenter
andr>0istheradius.If06=b2Cthenthelinethroughtheorigininthedirection
bisthesetofallpointsoftheformtb,t2R,orallzwithIm(z/b)=0.Ift2R
andc>0then(t+ci)b=tb+cibrepresentsapointinthehalfplanetotheleftof
bdeterminedbythelinetb,i.e.,{z:Im(z/b)>0}istheequationofthathalf-plane.
Similarly,{z:Im[(z−a)/b]>0}isthetranslationofthathalf-planebya,i.e.,thehalf-
planedeterminedbythelinethroughaparalleltobandinthedirectiontotheleftof
b.
390090274.001.png
 
3
Stereographicprojectiondeterminesaone-to-onecorrespondencebetweentheunit
sphereinR 3 minusthenorth-pole,S,andthecomplexplaneviathecorrespondence
z$ x 1 +ix 2
1−x 3 ,
1+|z| 2 , x 2 = 2Imz
1+|z| 2 , x 3 = |z| 2 −1
|z|+1 .
IfwedefineC 1 =C[{1},thenwehaveaone-to-onecorrespondencebetweenSand
C 1 .ThisallowsustodefineametriconC 1 ,whichisgivenby
d(z 1 ,z 2 )= 2|z 1 −z 2 |
p 1+|z| 2 .
II.ElementaryPropertiesandExamplesofAnalyticFunctions
Forz6=1, P N n=0 z n =(1−z N+1 )/(1−z).Thereforethegeometricseries P 1 n=0 z n
converges(to1/(1−z))if|z|<1.Itclearlydiverges,infactitstermsbecomeunbounded,
if|z|>1.
WeierstrassM-Test.LetM 0 ,M 1 ,...bepositivenumberswith P M n <1andsuppose
thatf n :X!CarefunctionsonsomesetXsatisfyingsup x2X |f n (x)|M n .Then
R =limsup|a n | 1/n .
Then(1)foranya2Cthepowerseries P 1 n=0 a n (z−a) n convergesabsolutelyforall
|z−a|<Randitconvergesabsolutelyanduniformlyonthedisk|z−a|rforallr<R.
(2)Thesequencea n (z−a) n isunboundedforall|z−a|>R(andhencetheseriesis
certainlydivergent).
Thusweseethatthesetofpointswhereapowerseriesconvergesconsistsofadisk
|z−a|<Randpossiblyasubsetofitsboundary.Riscalledtheradiusofconvergenceof
itsseries.ThecaseR=1isallowed.
Proofoftheorem.Foranyr<RweshowabsoluteuniformconvergenceonD r ={|z−a|
r}.Choose˜r2(r,R).Then,1/˜r>limsup|a n | 1/n ,so|a n | 1/n <1/˜rforallnsuciently
large.Forsuchn,|a n |<1/˜r n andso
sup
z2D r
|a n (z−a) n |<(r/˜r) n .
Since P (r/˜r) n <1wegettheabsoluteuniformconvergenceonD r .
If|z−a|=r>R,take˜r2(R,r).Thenthereexistnarbitrarilylargesuchthat
|a n | 1/n 1/˜r.Then,|a n (z−a) n |(r/˜r) n ,whichcanbearbitrarilylarge.
x 1 = 2Rez
p (1+|z 1 | 2 )(1+|z 2 | 2 ) , d(z,1)= 2
P 1 n=0 f n (x)isabsolutelyanduniformlyconvergent.
Theorem.Leta 0 ,a 1 ,···2CbegivenanddefinethenumberRby
1
390090274.002.png
 
4
thislimitistheradiusofconvergenceRof P a n (z−a) n .
Thustheseries P a n z n hastermsofincreasingmagnitude,andsocannotbeconvergent.
Thus|z|R.Thisshowsthatlim|a n /a n+1 |R.
Similarly,supposethatz<lim|a n /a n+1 |.Thenforallnsucientlylarge|a n |>|a n+1 z|
and|a n z n |>|a n+1 z n+1 |.Thustheserieshastermsofdecreasingmagnitude,andso,by
theprevioustheorem,|z|R.Thisshowsthatlim|a n /a n+1 |R.
Remark.Onthecircleofconvergence,manydierentbehaviorsarepossible. P z n diverges
forall|z|=1. P z n /ndivergesforz=1,elseconverges,butnotabsolutely(thisfollows
fromthefactthatthepartialsumsof P z n areboundedforz6=1and1/n#0). P z n /n 2
convergesabsolutelyon|z|1.Sierpinskigavea(complicated)exampleofafunction
whichdivergesateverypointoftheunitcircleexceptz=1.
Asanapplication,weseethattheseries
1 X
z n
n!
n=0
convergesabsolutelyforallz2Candthattheconvergenceisuniformonallboundedsets.
Thesumis,bydefinition,expz.
Nowsupposethat P 1 n=0 a n (z−a) n hasradiusofconvergenceR,andconsideritsformal
hasthesameradiusofconvergenceas P 1 n=0 a n (z−a) n since
(z−a)
N X
a n+1 (z−a) n =
N+1 X
a n (z−a)−a 0 ,
n=0
n=0
andsothepartialsumsontheleftandrighteitherbothdivergeforagivenzorboth
converge.Thisshows(inaroundaboutway)thatlimsup|a n+1 | 1/n =limsup|a n | 1/n =
1/R.Nowlim(n+1) 1/n =1asiseasilyseenbytakinglogs.Moreover,itiseasytoseethatif
limsupb n =bandlimc n =c>0,thenlimsupb n c n =bc.Thuslimsup|(n+1)a n+1 | 1/n =
1/R.Thisshowsthattheformalderivativeofapowerserieshasthesameradiusof
convergenceastheoriginalpowerseries.
Dierentiabilityandanalyticity.Definitionofdierentiabilityatapoint(assumes
functionisdefinedinaneighborhoodofthepoint).
Mostoftheconsequencesofdierentiabilityarequitedierentintherealandcomplex
case,butthesimplestalgebraicrulesarethesame,withthesameproofs.Firstofall,
dierentiabilityatapointimpliescontinuitythere.Iffandgarebothdierentiableata
pointa,thensoaref±g,f·g,and,ifg(a)6=0,f/g,andtheusualsum,product,and
quotientruleshold.Iffisdierentiableataandgisdierentiableatf(a),thengf
isdierentiableataandthechainruleholds.Supposethatfiscontinuousata,gis
continousatf(a),andg(f(z))=zforallzinaneighborhoodofa.Thenifg 0 (f(a))exists
andisnon-zero,thenf 0 (a)existsandequals1/g 0 (f(a)).
Theorem.Ifa 0 ,a 1 ,...2Candlim|a n /a n+1 |existsasafinitenumberorinfinity,then
Proof.Withoutlossofgeneralitywecansupposethata=0.Supposethat|z|>
lim|a n /a n+1 |.Thenforallnsucientlylarge|a n |<|a n+1 z|and|a n z n |<|a n+1 z n+1 |.
derivative P 1 n=1 na n (z−a) n−1 = P 1 n=0 (n+1)a n+1 (z−a) n .Nowclearly P n=0 a n+1 (z−a) n
5
Definition.Letfbeacomplex-valuedfunctiondefinedonanopensetGinC.Thenf
issaidtobeanalyticonGiff 0 existsandiscontinuousateverypointofG.
Remark.WeshallprovelaterthatiffisdierentiableateverypointofanopensetinC
itisautomaticallyanalytic;infact,itisautomaticallyinfinitelydierentiable.Thisisof
coursevastlydierentfromtherealcase.
IfQisanarbitrarynon-emptysubsetofCwesayfisanalyticonQifitisdefinedand
analyticonanopensetcontainingQ.
Wenowshowthatapowerseriesisdierentiableateverypointinitsdiskofconvergence
andthatitsderivativeisgivenbytheformalderivativeobtainedbydierentiatingterm-
by-term.Sinceweknowthatthatpowerserieshasthesameradiusofconvergence,it
followsthatapowerseriesisanalyticandinfinitelydierentiableinitsconvergencedisk.
Forsimplicity,andwithoutlossofgeneralityweconsiderapowerseriescenteredatzero:
issatisfiedforallzsucientlyclosetoz 0 ,whereg(z)= P 1 n=1 na n z n−1 .Lets N (z)=
z−z 0 −g(z 0 )
P N n=0 a n z n ,R N (z)= P 1 n=N+1 a n z n .Then
z−z 0 −g(z 0 )
z−z 0 −s 0 N (z 0 )
=:T 1 +T 2 +T 3 .
+|s 0 N (z 0 )−g(z 0 )|+
R N (z)−R N (z 0 )
z−z 0
Nows 0 N (z 0 )isjustapartialsumforg(z 0 ),soforNsucientlylarge(andallz),T 2 /3.
Also,
R N (z)−R n (z 0 )
X
a n z n −z n 0
z−z 0 =
z−z 0 .
n=N+1
0 |a n nr n−1 .
Since P a n nr n−1 isconvergent,wehaveforNsucientlylargeandall|z|<rthen
T 3 </3.NowfixavalueofNwhichissucientlylargebybothcriteria.Thenthe
dierentiabilityofthepolynomials N showsthatT 1 /3forallzsucientlyclosetoz 0 .
Wethusknowthatiff(z)= P a n z n ,then,withinthediskofconvergence,f 0 (z)=
z−z 0
=|a n ||z n−1 +z n−2 z 0 +···+z n−1
P na n z n−1 ,andbyinduction,f 00 (z)= P n(n−1)a n z n−2 ,etc.Thusa 0 =f(0),a 1 =f 0 (0),
a 2 =f 00 (0)/2,a 3 =f 000 (0)/3!,etc.Thisshowsthatanyconvergentpowerseriesisthesum
ofitsTaylorseriesinthediskofconvergence:
f(z)= X f n (a)
n! (z−a) n .
Inparticular,exp 0 =exp.
f(z)= P n a n z n .SupposethattheradiusofconvergenceisRandthat|z 0 |<R.Wemust
showthatforany>0,theinequality
f(z)−f(z 0 )
s N (z)−s N (z 0 )
f(z)−f(z 0 )
1
Now|z 0 |<r<Rforsomer,andifwerestrictto|z|<r,wehave
a n z n −z n 0
Zgłoś jeśli naruszono regulamin