Mathematical_Methods_in_Quantum_Mechanics_-_G._Teschl.pdf
(
1556 KB
)
Pobierz
Mathematical Methods in Quantum Mechanics
MathematicalMethods
inQuantumMechanics
WithApplicationstoSchr¨odingerOperators
GeraldTeschl
GeraldTeschl
Fakult¨atf¨urMathematik
Nordbergstraße15
Universit¨atWien
1090Wien,Austria
E-mail:
Gerald.Teschl@univie.ac.at
URL:
http://www.mat.univie.ac.at/˜gerald/
2000Mathematicssubjectclassification.81-01,81Qxx,46-01
Abstract.Thismanuscriptprovidesaself-containedintroductiontomath-
ematicalmethodsinquantummechanics(spectraltheory)withapplications
toSchr¨odingeroperators.Thefirstpartcoversmathematicalfoundations
ofquantummechanicsfromself-adjointness,thespectraltheorem,quantum
dynamics(includingStone’sandtheRAGEtheorem)toperturbationtheory
forself-adjointoperators.
ThesecondpartstartswithadetailedstudyofthefreeSchr¨odingerop-
eratorrespectivelyposition,momentumandangularmomentumoperators.
ThenwedevelopWeyl-TitchmarshtheoryforSturm-Liouvilleoperatorsand
applyittosphericallysymmetricproblems,inparticulartothehydrogen
atom.Nextweinvestigateself-adjointnessofatomicSchr¨odingeroperators
andtheiressentialspectrum,inparticulartheHVZtheorem.Finallywe
havealookatscatteringtheoryandproveasymptoticcompletenessinthe
shortrangecase.
Keywordsandphrases.Schr¨odingeroperators,quantummechanics,un-
boundedoperators,spectraltheory.
TypesetbyA
M
S-L
A
T
E
XandMakeindex.
Version:April19,2006
Copyrightc1999-2005byGeraldTeschl
Contents
Preface
vii
Part0.Preliminaries
Chapter0.AfirstlookatBanachandHilbertspaces
3
§0.1.Warmup:Metricandtopologicalspaces
3
§0.2.TheBanachspaceofcontinuousfunctions
10
§0.3.ThegeometryofHilbertspaces
14
§0.4.Completeness
19
§0.5.Boundedoperators
20
§0.6.LebesgueL
p
spaces
22
§0.7.Appendix:Theuniformboundednessprinciple
27
Part1.MathematicalFoundationsofQuantumMechanics
Chapter1.Hilbertspaces
31
§1.1.Hilbertspaces
31
§1.2.Orthonormalbases
33
§1.3.TheprojectiontheoremandtheRieszlemma
36
§1.4.Orthogonalsumsandtensorproducts
38
§1.5.TheC
algebraofboundedlinearoperators
40
§1.6.Weakandstrongconvergence
41
§1.7.Appendix:TheStone–Weierstraßtheorem
44
Chapter2.Self-adjointnessandspectrum
47
iii
iv Contents
§2.1.Somequantummechanics
47
§2.2.Self-adjointoperators
50
§2.3.Resolventsandspectra
61
§2.4.Orthogonalsumsofoperators
67
§2.5.Self-adjointextensions
68
§2.6.Appendix:Absolutelycontinuousfunctions
72
Chapter3.Thespectraltheorem
75
§3.1.Thespectraltheorem
75
§3.2.MoreonBorelmeasures
85
§3.3.Spectraltypes
89
§3.4.Appendix:TheHerglotztheorem
91
Chapter4.Applicationsofthespectraltheorem
97
§4.1. Integralformulas
97
§4.2.Commutingoperators
100
§4.3.Themin-maxtheorem
103
§4.4.Estimatingeigenspaces
104
§4.5.Tensorproductsofoperators
105
Chapter5.Quantumdynamics
107
§5.1.ThetimeevolutionandStone’stheorem
107
§5.2.TheRAGEtheorem
110
§5.3.TheTrotterproductformula
115
Chapter6.Perturbationtheoryforself-adjointoperators
117
§6.1.RelativelyboundedoperatorsandtheKato–Rellichtheorem
117
§6.2.Moreoncompactoperators
119
§6.3.Hilbert–Schmidtandtraceclassoperators
122
§6.4.RelativelycompactoperatorsandWeyl’stheorem
128
§6.5.Strongandnormresolventconvergence
131
Part2.Schr¨odingerOperators
Chapter7.ThefreeSchr¨odingeroperator
139
§7.1.TheFouriertransform
139
§7.2.ThefreeSchr¨odingeroperator
142
§7.3.Thetimeevolutioninthefreecase
144
§7.4.TheresolventandGreen’sfunction
145
Plik z chomika:
dmx2io2
Inne pliki z tego folderu:
Modern_Quantum_Mechanics_and_solutions_for_the_exercices_-_J._Sakurai.pdf
(77728 KB)
an_elementary_approach_to_the_quantum_theory_of_scattering_by_a_potential.djvu
(6986 KB)
Bibliographic_Guide_to_Foundations_of_Quantum_Mechanics_-_A._Cabello.pdf
(5537 KB)
Canonical_Structures_in_potential_Theory_-_S.S._Vinogradov__P._D._Smith__E.D._Vinogradova.pdf
(6082 KB)
Cavity_quantum_electrodynamics_the_strange_theory_of_light_in_a_box_-_Dutra_S.djvu
(4332 KB)
Inne foldery tego chomika:
[1
[Ron_Brinkmann]The Art and Science of Digital Compositing, Second Edition Techniques for Visual Effects, Animation and Motion Graphics (pdf){Zzzzz}
[udemy] Python - Learn Python From Scratch In No Time Flat!
[udemy] Python Tutorial Python 100% Hands-On
100 Great Scientists (Tell Me Why #121)
Zgłoś jeśli
naruszono regulamin